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Abstract

A systematic approach for analyzing multiple physical processes interacting at multiple spatial and temporal scales is

developed. The proposed computational framework is applied to the coupled thermo-viscoelastic composites with

microscopically periodic mechanical and thermal properties. A rapidly varying spatial and temporal scales are intro-

duced to capture the effects of spatial and temporal fluctuations induced by spatial heterogeneities at diverse time scales.

The initial-boundary value problem on the macroscale is derived by using the double scale asymptotic analysis in space

and time. It is shown that an extra history-dependent long-term memory term introduced by the homogenization

process in space and time can be obtained by solving a first order initial value problem. This is in contrast to the long-

term memory term obtained by the classical spatial homogenization, which requires solutions of the initial-boundary

value problem in the unit cell domain. The validity limits of the proposed spatial–temporal homogenized solution are

established. Numerical example shows a good agreement between the proposed model and the reference solution

obtained by using a finite element mesh with element size comparable to that of material heterogeneity.

� 2002 Published by Elsevier Science Ltd.
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1. Introduction

The primary objective of the manuscript is to develop a systematic approach for analyzing multiple

physical processes interacting at multiple spatial and temporal scales. The interacting physical processes
may include mechanical, thermal, diffusion, chemical and electromagnetic fields. Most often these pheno-

mena are treated as being uncoupled; hence, few separate analyses of the same system are typically per-

formed for the complete prediction of the response. It is, however, understood that such treatments should

be regarded as first order approximations to the real complex interactions.
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The coupling of mechanical, thermal, diffusion, chemical and electromagnetic fields (stress/strain, tem-
perature, concentration, current) occurs through diverse phenomena, some of which are depicted in the

interaction matrix shown in Table 1. The interaction matrix is ‘‘non-symmetric’’, with cell ði; jÞ representing
the phenomenon induced by the process corresponding to field i and which influences field j. For instance,

cell ð1; 2Þ represents heating due to plastic deformation, while cell ð2; 1Þ corresponds to thermal expansion

and thermal stresses. A fully coupled analysis would consider all processes shown in the matrix, while fully

uncoupled approach would only consider the diagonal entries. A one-way (or partially) coupled approach

would consider a lower (or upper) triangular entries in the interaction matrix.

It is important to note that coupling of various physical processes in the mathematical model can be
carried out either by considering additional terms in the field equations (equation coupling) or by allowing

the constitutive law to depend on the interacting field (constitutive law coupling). An example of the first

category is the effect of the temperature gradient on the stress field, which can be captured by adding a

thermal stress term to equilibrium equations. A less familiar example within the same class of problems is

the effect of diffusion (clustering) and chemical reactions (reaction products) on the stress field, which can

be accounted for by the eigenstrain formulation (Fish and Belsky, 1995). An example from the second

category is the influence of temperature upon diffusion which can be captured by simply considering the

diffusion coefficients to be temperature dependent. Symbols E and C in Table 1 stand for the technique to
be used for coupling the respective phenomenon, with E standing for ‘‘equation coupling’’ and C desig-

nating ‘‘constitutive law coupling’’.

Multiple length scales may exist in both space and time domains. To model spatial length scales induced

by a spatial heterogeneity a small positive scaling parameter el is introduced so that a local coordinates y
can be identified and related to the global reference coordinates x by

y ¼ x=el ð1Þ

The response fields are then assumed to be the function of ðx; yÞ which represents the dependence on the

local oscillations induced by the spatial heterogeneity in the vicinity of the macroscopic point. The value of

el and thus the validity of the spatial homogenization approach has been shown to depend on the following

four factors (Fish and Belsky, 1995): (a) the size of the unit cell, (b) the volume fraction, (c) the mismatch of

properties between micro-constituents, and (d) the macroscopic spatial gradients. The latter two factors
imply that el might be different for various physical processes.

Table 1

Physical processes interaction matrix

Deformation (displace-

ments)

Deformation induced

heat production E

Strain controlled diffu-

sion C

Strain controlled chem-

ical activity C

Deformation induced

electric and magnetic

flux E

Thermal expansion E Heat transfer (tempera-

ture)

Temperature controlled

diffusion C

Temperature controlled

chemical activity C

Temperature controlled

electric and magnetic

behavior C

Clustering, precipitation

(eigenstrains) E

Diffusant concentration

controlled heat transfer

C

Diffusion (diffusant

concentration)

Transport of reactants

E

Diffusion induced elec-

trical and magnetic po-

tentials E

Reaction products ac-

commodation (eigen-

strains) E

Heat production during

chemical reactions E

Transport of reaction

products E

Chemical reactions Reaction products in-

duced electric and mag-

netic flux E

Deformation due to

Lorentz force E

Heat input from Joule

heating E

Transport of charged

particles E

Electro-magnetic field

controlled chemical ac-

tivity C

Electro-magnetism
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To characterize the fast varying features of response fields in time domain, we assume that there exists a

small positive scaling parameter es so that a fast time coordinate s can be identified and defined as

s ¼ t=es ð2Þ

where t is a natural time coordinate. In contrast to the spatial scale separation, which is typically induced by

a spatial heterogeneity, multiple time scales can be attributed to the following three factors (and their

combinations):

1.1. Multiple time scales induced by the interaction of multiple physical processes

For illustration consider the stress-driven diffusion problem (Glicksman, 2000) in a one-dimensional

periodic heterogeneous medium:

mechanical field :
r;x ¼ 0

r ¼ Efu;x � 1ðC � C0Þg
ð3Þ

diffusion process : _CC ¼ fDðC;x � Cjr;xÞg;x ð4Þ

BCs and IC :
uðx ¼ 0Þ ¼ u0 sinð2pxtÞ; uðx ¼ LÞ ¼ 0

Cðt ¼ 0Þ ¼ C0
ð5Þ

where r denotes the stress; u the displacement field; C the concentration of solute; C0 the initial concen-

tration of solute; E the Young�s modulus; 1 the diffusion expansion coefficient; j the material constant; D

the diffusivity coefficient; and L the length of the model. The comma followed by a subscript variable

denotes a partial derivative and superscribed dot stands for the time derivative. Material properties E, 1, D
and j take different values in distinct material phases.

Due to the linearity, the frequency of the mechanical response fields in (3) is the same as the loading
frequency. For stress-driven diffusion process the diffusion driven force DCjr;x is oscillatory with frequency

x, while the diffusion rate is dominated by the diffusivity coefficient and material heterogeneity, which

might be much slower than the oscillation of the driving force. The intrinsic diffusion time scale can be

estimated by the time elapse tr for a solute particle traveling throughout the unit cell. From (4), we have

tr ¼ Ofminðl2=DÞg ð6Þ

where l is the length of the unit cell. Due to local periodicity, it follows from (6) that all the unbalance of

concentration prior to the time elapse tr is balanced throughout the model during tr. Thus the time scaling

parameter es is defined as the ratio between the period of mechanical oscillation (1=x) and the intrinsic
diffusion time scale tr, i.e.

es ¼ 1=xtr ð7Þ

Thus the second time scale is introduced due to the interaction of physical processes provided that the
mechanical oscillation is at a significantly higher frequency than the diffusion process (i.e., es � 1).

1.2. Multiple time scales induced by the difference between the frequency of the response fields and the material

intrinsic time scale

As an illustrative example consider a rate-dependent material (Kelvin–Voigt type viscoelastic solid)
under cyclic loading in one-dimension:
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r;x ¼ 0

r ¼ Eu;x � V _uu;x
ð8Þ

where V denotes viscosity. The boundary conditions are assumed to be the same as those defined in (5). The

frequency of the mechanical response is x due to the linearity, while the material intrinsic time scale is

governed by tr ¼ V =E, which represents the rate of creep behavior (Yu and Fish, submitted for publica-

tion). The resulting time scaling parameter directly follows from (7).

1.3. Multiple time scales induced by multiple spatial scales

A typical example for this case is a dispersion phenomenon resulting from the wave propagation in

heterogeneous media. The spatial scaling parameter el is a consequence of disparity between the wave

length and the unit cell size. For the details of this problem, we refer to Chen and Fish (in press).

In this paper attention is restricted to multiple time scales induced by the interaction of multiple physical

processes. For demonstration purposes we consider an initial-boundary value problem for the thermo-
viscoelastic composite. It consists of two spatial scales (micro-constituents and the macro-domain), two

temporal scales (the time scale associated with an applied loading and the intrinsic time scale of the rate-

dependent material) and two fully coupled physical processes (thermal and mechanical). Both the con-

stitutive law coupling due to thermally sensitive material properties and the equation coupling induced by

thermal stresses are taken into account for mechanical fields. For thermal fields, on the other hand, we

assume that only the equation coupling occurs due to the mechanical dissipation and dilation effects.

To model the local oscillations of mechanical and thermal fields induced by spatial heterogeneities at

diverse time scales, an asymptotic homogenization theory for multiple physical processes with multiple
spatial and temporal scales is developed. When the loading is highly oscillatory in comparison with the

material intrinsical time scale it is natural to incorporate a rapidly varying time scale in the asymptotic

analysis. This fast time variable is defined to characterize the fast varying features of mechanical and

thermal response fields in time domain.

Homogenization with multiple temporal scales could be traced back to Bensoussan et al. (1978) where

the convergence analyses of the hyperbolic equations with oscillatory coefficients were established.

Francfort (1983) generalized the conventional spatial homogenization method to the case of thermo-elastic

composites. For the hyperbolic conservation law with rapid spatial fluctuations, Kevorkian and Bosley
(1998) showed that the continuous initial data which is independent on the fast temporal scale may in-

troduce a dependence on both fast spatial and temporal scales in the homogenized solutions. A handful of

recent publications on this topic has been briefly reviewed in Chen and Fish (in press), where the role of

multiple temporal scales in wave propagation in heterogeneous solids was investigated.

In Section 2 we start our presentation with a general setting of the initial-boundary value problem for the

fully coupled Kelvin–Voigt thermo-viscoelastic composite. In addition to the usual space–time coordinates

rapidly varying spatial and temporal scales are introduced to capture the effects of spatial, and temporal

fluctuations. The macroscopic initial-boundary value problem is obtained by the double scale asymptotic
analysis in space and time. It is shown that an extra long-term memory obtained from solving a first order

initial value problem in macroscopic field is introduced into the homogenized solution. For the homo-

genization of viscoelastic heterogeneous media, it has been revealed that in addition to the original

memories due to the viscosity of micro-constituents, an extra long-term fading memory is induced by the

homogenization process. This phenomenon has been illustrated in Francfort and Suquet (1986), Galka et al.

(1992), Glicksman (2000) and Iesan and Scalia (1996) for either Kelvin–Voigt or Maxwell viscoelastic

model with only instantaneous memories in the micro-constituents. This extra long-term memory in the

homogenized constitutive equation arises due to the interactions between fast spatial variation and time
dependence of the coefficients of partial differential equations. We remark that all these studies were based
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on the spatial homogenization only and the history-dependent integral kernel associated with the long-term

memory is determined by a local initial-boundary value problem in the unit cell domain (Francfort and

Suquet, 1986; Suquet, 1987). In this manuscript we show that the extra long-term memory term resulting

from the homogenization process in space and time can be obtained by solving a first order initial value
problem. This is in contrast to the long-term memory term obtained by the classical spatial homogeniza-

tion, which requires solution of the initial-boundary value problem in the unit cell domain. This gives rise to

an elegant homogenized solution which can be easily implemented into the numerical setting.

The asymptotic space–time homogenization formulation for the coupled Kelvin–Voigt thermo-visco-

elastic composites is presented in Section 2. In addition to the usual space–time coordinates, rapidly varying

spatial and temporal scales are introduced to capture the effects of spatial and temporal fluctuations. The

macroscopic initial-boundary value problem is obtained by the double scale asymptotic analysis in space

and time. Section 3 discusses various relations between the temporal and spatial scales as well as the validity
of the proposed model. Numerical experiment comparing the proposed model with the classical spatial

homogenization and the reference solution obtained by using a finite element mesh with element size

comparable to that of material heterogeneity is given in Section 4.

2. Space–time multiple scale analysis for the coupled thermo-viscoelastic composite

In the present work, the Kelvin–Voigt viscoelastic model is considered for micro-constituents. In con-

trast to the multiscale analysis conducted by Boutin and Wong (1998), where a single frequency quasi-

harmonic displacement field has been assumed so that the constitutive equation can be transformed to the

elastic-like form, we consider a general setting of the coupled initial-boundary value problem. The dis-
tributed heat source arises due to the mechanical dissipation and the thermal dilation in micro-constituents.

The thermally sensitive mechanical properties (stiffness and viscosity) as well as the thermal dilation term in

the constitutive equation lead to the full coupling between mechanical response and thermal diffusion.

2.1. Definition of multiple spatial and temporal scales

The microstructure of a composite material is assumed to be locally periodic (Y-periodic) with a scale

parameter el defined by the representative volume element (RVE or unit cell). The macroscopic domain is

represented by Xe while H denotes the unit cell domain. We assume that RVE exists and its characteristic

size l is small enough in comparison with the reference length lr on the macroscale so that

el ¼ l=lr; el � 1 ð9Þ

In addition to the distinct spatial scales, we can identify at least two temporal scales in a typical thermo-

viscoelastic problem: the time scale associated with the applied loading and the intrinsic time scale of the
rate-dependent material. In the present work, we introduce a fast varying temporal coordinate s to rep-

resent the fast oscillations of mechanical and thermal fields in time domain induced by the highly oscillatory

loading. For linear systems and weakly non-linear systems, the characteristic length of s is of the same order

as the period s0 of loading profile (Boutin and Wong, 1998). We assume that the intrinsic time scale tr,
which is determined by material properties, describes a relatively long-term behavior, and thus the fol-

lowing relations hold:

es ¼ s0=tr; es � 1 ð10Þ

where tr is the characteristic length of the natural time scale denoted by t; es is the small scale parameter

defined in the time domain. We start by considering the special case of
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el � es � e ð11Þ
Further discussion on the different relations between the temporal and spatial scales as well as on the

validity of the homogenized solution is left to Section 4. It is important to note that the definitions of the

multiple spatial and temporal length scales are physically distinct for the mechanical and thermal fields.

With the definition of the fast varying variables y and s as well as the local Y-periodicity assumption, all

the mechanical and thermal response quantities denoted by / can be defined as

/ðy; sÞ ¼ /ðyþ Kŷy; sÞ ð12Þ
where ŷy is the basic period vector of the microstructure and K is a 3 by 3 diagonal matrix with arbitrary

integer components. The corresponding eY -periodic function can be defined by using the conventional

nomenclature:

/eðx; tÞ ¼ /ðx; y; t; sÞ ð13Þ

The differentiations with respect to space and time variables can be expressed using the chain rule:

/e
;i ¼ /;xi þ e�1/;yi and _//e ¼ /;t þ e�1/;s ð14Þ

where the comma followed by a subscript variable denotes a partial derivative and superscribed dot denotes

the time derivative. Summation convention for repeated subscripts is adopted except for the subscripts x

and y.

2.2. Initial-boundary value problem statement for the coupled thermo-viscoelastic composites

Attention is restricted to small deformations and small temperature increases. The microscopic con-

stituents are assumed to be homogeneous and their thermo-viscoelastic behavior can be described by the

following initial-boundary value problem in the macroscopic domain Xe (Francfort and Suquet, 1986; Iesan

and Scalia, 1996).

(1) Equation of motion

qe€uue
i ¼ re

ij;j þ bi ð15Þ

where qe is the density; €uue
i and re

ij the displacement and stress components, respectively; bi the body force

component assumed to be independent of the fast varying coordinates.

(2) Constitutive equation

re
ij ¼ Le

ijkle
e
kl þ V e

ijkl _ee
e
kl � be

ijh
e ð16Þ

where ee
kl and _eee

kl denote the strain and the strain rate components, respectively; he the temperature

change from the initial temperature; Le
ijkl and V e

ijkl the elastic stiffness and the viscosity tensor compo-

nents, respectively; be
ij ¼ Le

ijkla
e
kl where ae

kl denotes the coefficient of thermal expansion and be
ijh

e stands
for the components of the thermal stress. We assume that the fourth-rank tensor components Le

ijkl and

V e
ijkl as well as the second-rank tensor components ae

kl and be
kl satisfy conditions of symmetry and po-

sitivity. We further assume that Le
ijkl and V e

ijkl are thermally sensitive which lead to the constitutive law

coupling between the mechanical and thermal fields, while ae
kl is assumed to be insensitive to the

temperature change, i.e. ae
ij 
 aijðx; yÞ

(3) Kinematic equation

ee
ij ¼ 1

2
ðue

i;j þ ue
j;iÞ ð17Þ
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(4) Energy equation

ke _hhe ¼ qe
i;i þ Qþ V e

ijkl _ee
e
ij _ee

e
kl � T0b

e
ij _ee

e
ij ð18Þ

where ke ¼ qece and ce is the specific heat per unit mass; qe
i denotes heat flux; T0 the initial temperature

and Q the heat supply. Both T0 and Q are assumed to be independent of the fast varying coordinates.

The total temperature T e is given by T e ¼ T0 þ he. The mechanical dissipation term V e
ijkl _ee

e
ij _ee

e
kl and the

dilation induced heat supply T0b
e
ij _ee

e
ij fall into the category of equation coupling for the thermal fields.

(5) Linear thermal diffusion

qe
i ¼ ke

ijh
e
;j ð19Þ

where ke
ij denotes the thermal conductivity tensor components assumed to be symmetric and positive

definite. Since ke
ij is insensitive to temperature changes, it is also assumed to be time-independent, i.e.,

ke
ij 
 kijðx; yÞ.

(6) Initial and boundary conditions

The non-oscillatory initial conditions at t ¼ 0 and s ¼ 0 are imposed on both time scales, i.e., the initial

state is assumed to be spatially and temporally smooth (Francfort, 1983). The thermo-mechanical

boundary conditions are also assumed to be non-oscillatory and the interfaces between different mi-

croscopic constituents are perfectly bonded.

2.3. Double scale asymptotic analysis in space and time

To solve for the initial-boundary value problem described in Section 2.2, we start by introducing the

following double scale asymptotic expansions:

ue
i ¼

X
m¼0;1;...

emum
i ðx; y; t; sÞ; he ¼

X
m¼0;1;...

emhmðx; y; t; sÞ ð20Þ

where um
i and hm are Y-periodic functions and m denotes the order of the associated component in the

expansion. According to (20) and the chain rule in (14), the asymptotic expansions of strain (17) and the

strain rate can be expressed as

ee
ij ¼

X
m¼�1;0;...

ememijðx; y; t; sÞ; _eee
ij ¼

X
m¼�2;�1;...

em _eemijðx; y; t; sÞ ð21Þ

where, with the definition of symmetric displacement gradients

enijx ¼ 1
2
ðun

i;xj
þ un

j;xi
Þ and enijy ¼ 1

2
ðun

i;yj
þ un

j;yi
Þ; n ¼ 0; 1; 2; . . . ð22Þ

the strain and strain rate components for various orders of e in (21) are given as

e�1
ij ðx; y; t; sÞ ¼ e0ijy ; enijðx; y; t; sÞ ¼ enijx þ enþ1

ijy ; n ¼ 0; 1; 2; . . . ð23Þ

and

_ee�2
ij ðx; y; t; sÞ ¼ e0ijy;s; _ee�1

ij ðx; y; t; sÞ ¼ e0ijy;t þ ðe0ijx þ e1ijyÞ;s
_eenijðx; y; t; sÞ ¼ ðenijx þ enþ1

ijy Þ;t þ ðenþ1
ijx þ enþ2

ijy Þ;s; n ¼ 0; 1; 2; . . . ð24Þ

Consequently, the expansion of the stress field is obtained by substituting the expansions in (22) into the

constitutive equation (16), which gives

re
ij ¼

X
m¼�2;�1;...

emrm
ijðx; y; t; sÞ ð25Þ
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where

r�2
ij ðx; y; t; sÞ ¼ V e

ijkl _ee
�2
kl ; r�1

ij ðx; y; t; sÞ ¼ Le
ijkle

�1
kl þ V e

ijkl _ee
�1
kl

rn
ijðx; y; t; sÞ ¼ Le

ijkle
n
kl � be

ijh
n þ V e

ijkl _ee
n
kl; n ¼ 0; 1; 2; . . . ð26Þ

Similarly, the expansion of the heat flux is obtained by using (19) and (20) such that

qe
i ¼

X
m¼�1;0;...

emqm
i ðx; y; t; sÞ ð27Þ

where

q�1
i ðx; y; t; sÞ ¼ ke

ijh
0
;yj

and qn
i ðx; y; t; sÞ ¼ ke

ijðh
n
;xj
þ hnþ1

;yj
Þ; n ¼ 0; 1; 2; . . . ð28Þ

Having defined the asymptotic expansions for the mechanical and thermal fields, the equation of motion

(15) and the energy equation (18) can be stated in terms of two sets of equations with increasing order of e
starting from Oðe�4Þ for the energy equation and Oðe�3Þ for the equation of motion. Solving these equations

successively yields the Oðe0Þ initial-boundary value problem and the homogenized constitutive equations.

2.3.1. O(e�4) and O(e�3) equations

We first consider the Oðe�4Þ energy equation

V e
ijkl _ee

�2
ij _ee�2

kl ¼ 0 ð29Þ

Due to symmetry and positivity of the viscosity tensor V e
ijkl as illustrated by Eq. (29), along with Eqs. (24)

and (26), leads to

_ee�2
ij ¼ e0ijy;s ¼ 0; r�2

ij ¼ 0 ð30Þ

Since the initial conditions are non-oscillatory it implies e0ijyðx; t; s ¼ 0Þ ¼ 0 and the first equation in (30)

gives e0ijy ¼ 0, i.e., u0i is independent of y

u0i 
 u0i ðx; t; sÞ ð31Þ
With (30), it can be easily shown that the Oðe�3Þ order equation of motion and energy equation are au-

tomatically satisfied.

2.3.2. O(e�2) equation

The Oðe�2Þ order equations take the following form:

qeu0i;ss ¼ r�1
ij;yj

q�1
i;yi

þ V e
ijkl _ee

�1
ij _ee�1

kl ¼ 0
ð32Þ

Integrating the first equation in (32) over the unit cell domain and making use of the Y-periodicity of r�1
ij

and the Y-independence of u0i as shown in (31), as well as the non-oscillatory initial conditions, yields

u0i;ss ¼ 0 ) u0i 
 u0i ðx; tÞ ð33Þ

Apparently, u0i is independent of fast spatial and temporal variables and thus it represents the macroscopic
displacement field while its symmetrical gradient e0ijx represents the macroscopic strain field. With this in

mind along with (24) and (26), the Oðe�2Þ order equation of motion in (32) is reduced to

r�1
ij;yj

¼ ðV e
ijkle

1
kly;sÞ;yj ¼ 0 ð34Þ
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which can be further reduced to e1kly;s ¼ 0 due to the fact that V e
ijkl is symmetric and positive definite and u1i;s

is Y-periodic. Due to the non-oscillatory initial conditions it follows that

e1ijy ¼ 0 ) u1i 
 u1i ðx; t; sÞ ð35Þ

indicating that u1i is independent of y. Based on (33) and (34), the following identities for the strain and
stress fields can be identified:

e�1
ij ¼ 0; _ee�1

ij ¼ 0; r�1
ij ¼ 0 ð36Þ

Thus the first non-vanishing terms in the expansion of strain, strain rate and stress fields are all Oðe0Þ order.
As for the Oðe�2Þ order energy equation in (32), the simplified form can be obtained by exploiting (28)

and (36) which yields

ðke
ijh

0
;yj
Þ;yi ¼ 0 ð37Þ

Once again, the symmetry and positivity of ke
ij as well as the Y-periodicity of h0 provides the solution of (37)

in the form of

h0
;yj

¼ 0 ) h0 
 h0ðx; t; sÞ and q�1
i ¼ 0 ð38Þ

Therefore the first non-vanishing term in the expansion of heat flux qe
i also starts from Oðe0Þ order.

2.3.3. O(e�1) equation

With the solutions obtained from the lower order equations, (36) and (38), the Oðe�1Þ order equations
take the following form:

qeu1i;ss ¼ r0
ij;yj

keh0
;s ¼ q0i;yi

ð39Þ

We first consider the Oðe�1Þ order energy equation. Averaging it over the unit cell domain and utilizing the

Y-periodicity of q0i and Y-independence of h0, we have

h0
;s ¼ 0 ) h0 
 h0ðx; tÞ ð40Þ

Thus, h0 is independent of the fast varying variables and can be viewed as the macroscopic temperature true

change.

Along with (28) and (40), Oðe�1Þ order energy equation turns into

ke
ijðh

0
;xj

n
þ h1

;yj
Þ
o

;yi
¼ 0 ð41Þ

where, as we assumed in (19), ke
ij is independent of temperature change, i.e., ke

ij 
 kijðx; yÞ. Due to the

linearity of (41) (h0 is independent of y), the solution of h1 can be expressed by the following decomposition

h1ðx; y; t; sÞ ¼ liðyÞh0
;xj
þ P ðx; t; sÞ ð42Þ

where P ðx; t; sÞ is an arbitrary Y-independent function and liðyÞ is determined by

ke
ijðdjm

n
þ lm;yjðyÞÞ

o
;yi
¼ 0 in H ð43Þ

where djm is Kronecker delta. Eq. (43) along with the corresponding periodic boundary conditions repre-

sents a typical linear unit cell problem. Finite element method can be used to solve for this equation (see, for
example, Sanchez-Palencia, 1980). Upon the solutions of (43) and (42), Oðe0Þ order heat flux defined in (28)

can be written as
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q0i ¼ ke
ijðdjm þ lm;yjðyÞÞh

0
;xm

ð44Þ

We now consider Oðe�1Þ order equation of motion in (39). Using the same considerations as for Eq. (32)

and recalling that u1i is independent of y, the Oðe�1Þ order equation of motion provides

u1i;ss ¼ 0 ) u1i 
 u1i ðx; tÞ ð45Þ

It can be seen that u1i is independent of the fast varying variables. Consequently, the Oðe�1Þ order equation
of motion, combined with definitions in (24) and (26) as well as the relations in (33) and (40), turns into

r0
ij;yj

¼ Le
ijkle

0
klx

n
þ V e

ijklðe0klx;t þ e2kly;sÞ � be
ijh

0
o

;yj
¼ 0 ð46Þ

According to (33) and (40), we conclude that e0klx, e
0
klx;t and h0 represent the macroscopic strain, strain rate

and temperature fields which are independent of y and s. To solve (46) for e2kly;s in terms of these macro-

scopic response quantities, we recall that Le
ijkl and V e

ijkl have been assumed to be thermally sensitive in the

present work. Following Boutin and Wong (1998) and noting that our attention is restricted to small

temperature changes in comparison with the initial temperature T0, the thermally sensitive material

properties are defined as

Le
ijkl � Lini

ijklðx; yÞ þ h0ðx; tÞAini
ijklðx; yÞ

V e
ijkl � V ini

ijklðx; yÞ þ h0ðx; tÞBini
ijklðx; yÞ

ð47Þ

where Lini
ijkl and V ini

ijkl are elastic stiffness and viscosity tensor components evaluated at the initial temperature;

Aini
ijkl and Bini

ijkl represent the thermal sensitivity tensor components associated with the elastic stiffness and

viscosity evaluated at the initial temperature, respectively.

As stated in Section 2.1 the thermal expansion coefficient ae
kl is assumed to be independent of temper-

ature change, i.e., ae
kl 
 ae

klðx; yÞ. Since be
ij ¼ Le

ijkla
e
kl all the quantities in (46), except for e2kly;s, are known to

be independent of s. It follows that e2kly;s should be also independent of s. Following Fish and Belsky (1995)

and considering the temperature change h0 as a state variable determined by the energy equation (evolution

law) we introduce the following decomposition

u2k;sðx; y; t; sÞ ¼ 1kmnðyÞðe0mnx þ w0
mnÞ þ #kmnðyÞðe0mnx;t þ w0

mn;tÞ þ Ukðx; t; sÞ ð48Þ

where 1kmnðyÞ and #kmnðyÞ are the third-rank tensors which are symmetric with respect to m, n;

w0
mn 
 w0

mnðx; tÞ and w0
mn;t 
 w0

mn;tðx; tÞ represent the temperature induced macroscopic strain and strain rate

(eigenstrain and eigenstrain rate), respectively; Ukðx; t; sÞ is an arbitrary function. The symmetric gradient

of (48) is given as

e2kly;sðx; y; tÞ ¼ wklmnðyÞðe0mnx þ w0
mnÞ þ vklmnðyÞðe0mnx;t þ w0

mn;tÞ ð49Þ

where wklmnðyÞ and vklmnðyÞ denote the symmetric gradient of 1kmnðyÞ and #kmnðyÞ with respect to y, i.e.

wklmn ¼ f1kmn;yl
þ 1lmn;yk

g=2
vklmn ¼ f#kmn;yl

þ #lmn;yk
g=2

ð50Þ

To solve for 1kmnðyÞ and #kmnðyÞ as well as for the temperature change induced macroscopic response w0
mn

and d0
mn;t, we start by substituting (49) into (46), which yields

ðLe
ijmn

n
þ V e

ijklwklmnÞe0mnx þ V e
ijklwklmnw

0
mn � be

ijh
0 þ V e

ijklðdkmdln þ vklmnÞe0mnx;t þ V e
ijklvklmnw

0
mn;t

o
;yj

¼ 0 ð51Þ
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Since wklmn and vklmn are both assumed to be independent of time and thus temperature change, these two

local concentration functions can be evaluated by the following two linear unit cell problems obtained from

(51) when t ¼ 0 so that h0 ¼ 0 and w0
mn ¼ w0

mn;t ¼ 0:

Lini
ijmn

n
þ V ini

ijklwklmn

o
;yj

¼ 0 in H ð52Þ

V ini
ijklðdkmdln

n
þ vklmnÞ

o
;yj

¼ 0 in H ð53Þ

Again, similarly to (43), the above two linear unit cell problems along with the periodic boundary con-

ditions can be solved for 1kmnðyÞ and #kmnðyÞ, respectively, by using finite element method. Owing to the Y-

periodicity of Lini
ijkl and V ini

ijkl, both wklmn and vklmn are also Y-periodic. It can be readily proved that wklmn and

vklmn are polarization functions whose integrations over the unit cell domain vanish due to the periodicity.

The temperature change induced macroscopic response fields, w0
mn and w0

mn;t, are obtained by multiplying

(51) with the periodic function #kmnðyÞ and then integrating it by parts over the unit cell domain, which

leads to the initial value problem for w0
mn:

�aapqmnðx; tÞw0
mn;t þ �bbpqmnðx; tÞw0

mn ¼ ��ffpqmnðx; tÞe0mnx � �ggpqmnðx; tÞe0mnx;t þ �hhpqðx; tÞh0 ð54Þ

with the initial condition: w0
mn ¼ 0 and t ¼ 0. The time-dependent coefficients are given as

�aapqmn ¼ hvijpqV
e
ijklvklmni

�bbpqmn ¼ hvijpqV
e
ijklwklmni

�ffpqmn ¼ hvijpqðLe
ijmn þ V e

ijklwklmnÞi
�ggpqmn ¼ hvijpqV

e
ijklðdkmdln þ vklmnÞi

�hhpq ¼ hvijpqb
e
iji

ð55Þ

and the spatial averaging operator h�i is defined as

h�i ¼ 1

j H j

Z
H
�dH ð56Þ

where j H j is the volume of the unit cell. The solution of w0
mn from (54) is a history-dependent function

which leads to the long-term fading memory in the macroscopic constitutive equation. In contrast to the

long-term memory induced by the classical spatial homogenization process (Francfort and Suquet, 1986;

Sanchez-Palencia, 1980; Yi et al., 1998), which involves solving an initial-boundary value problem in the

unit-cell domain (see (A.16) in Appendix A), the present long-term memory is obtained by solving the first

order initial value problem at each Gauss-point in the macro-domain.
To this end, (49) can be expressed in a concise form as

e2kly;sðx; y; tÞ ¼ nklmnðx; y; tÞe0mnx þ fklmnðx; y; tÞe0mnx;t � gklðx; y; tÞh0 þ cklmnðx; y; tÞw0
mn ð57Þ

where

nklmn ¼ wklmn � vklpqð�aapqijÞ�1�ffijmn

fklmn ¼ vklmn � vklpqð�aapqijÞ�1�ggijmn

gkl ¼ �vklpqð�aapqijÞ�1�hhij

cklmn ¼ wklmn � vklpqð�aapqijÞ�1�bbijmn

ð58Þ
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Finally, we remark that the time-dependence of these four parameters is due to the temperature-dependence

of Le
ijkl and V e

ijkl.

2.3.4. O(e0) equation

The Oðe0Þ order equations of motion and energy, along with (33) and (36), can be written as

qe€uu0i ¼ r0
ij;xj

þ r1
ij;yj

þ bi

ke _hh0 ¼ q0i;xi þ q1i;yi þ Qþ V e
ijkl _ee

0
ij _ee

0
kl � T0b

e
ij _ee

0
ij

ð59Þ

where the Oðe0Þ order stress r0
ij and strain rate _ee0ij can be obtained from (24), (26), (45) and (57) which gives

r0
ij ¼ Le

ijkle
0
kl þ V e

ijkl _ee
0
kl � be

ijh
0

_ee0ij ¼ nijmne
0
mnx þ ðdimdjn þ fijmnÞe0mnx;t � gijh

0 þ cijmnw
0
mn

ð60Þ

It can be seen that both r0
ij and _ee0ij are independent of s.

For the Oðe0Þ order equation of motion in (59), the volume average over the unit cell domain provides

�qq€uu0i ¼ �rr0
ij;xj

þ bi ð61Þ

where the macroscopic stress is determined by the homogenized constitutive equation

�rr0
ij ¼ Lijkle0klx þ V ijkle0klx;t � �bbijh

0 þ Kijklw0
kl ð62Þ

and the homogenized coefficients are given by

�qq ¼ hqei
Lijkl ¼ hLe

ijkl þ V e
ijmnnmnkli

V ijkl ¼ hV e
ijmnðdmkdnl þ fmnklÞi

�bbij ¼ hbe
ij þ V e

ijklgkli
Kijkl ¼ hV e

ijmncmnkli

ð63Þ

The Oðe0Þ homogenized energy equation is obtained by averaging the second equation in (59) over the unit

cell domain and making use of (40) and (44)

�kk _hh0 ¼ ð�kkijh0
;xj
Þ;xi þ Qþ hV e

ijkl _ee
0
ij _ee

0
kli � T0hbe

ij _ee
0
iji ð64Þ

where _ee0ij is given in (60); �kkij is the homogenized thermal conductivity given by

�kkij ¼ hke
imðdjm þ lj;ymÞi ð65Þ

and the average volumetric specific heat �kk is defined as

�kk ¼ hqecei ð66Þ

Finally, we remark that the initial and boundary conditions for the components in asymptotic expansions

are defined to satisfy the imposed conditions of the source problem defined in Section 2.2. Thus the initial
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and boundary conditions for the Oðe0Þ components coincide with those imposed on the source problem,

while the components of higher order of e follow trivial initial and boundary conditions.

3. Validity of the homogenized solutions

In the previous section we have shown that the extra long-term memory in the homogenized constitutive

equation (62) can be obtained by solving a first order initial value problem in the macroscopic domain.

Therefore, the proposed homogenized constitutive model (62) offers significant computational advantages

by eliminating the need for evaluating the local initial-boundary problem associated with the long-term

memory in homogenization processes (Francfort and Suquet, 1986; Yi et al., 1998).

Despite the remarkable simplicity of the present mode, it is important to investigate under what cir-
cumstances the fast temporal scale exists and the homogenized solution is valid. Recall that the homo-

genized solution obtained in Section 2.3 is based on the assumption el � es � e. We have investigated other

relations between the temporal and spatial scales and results of these findings are summarized in Table 2.

The derivation details corresponding to various combinations of multiple spatial and temporal scales are

presented in the Appendix. It is shown that once the fast temporal scale in mechanical fields exists, the

present solution is unconditionally valid; the multiple temporal scales in thermal fields have no effect on the

Oðe0Þ homogenized solutions. On the other hand, when the fast temporal scale does not exist in mechanical

fields, our approach is not valid and the homogenized solutions take the classical form obtained by the
spatial homogenization only (Francfort and Suquet, 1986; Sanchez-Palencia, 1980).

The existence of fast varying temporal scale is determined by the characteristic temporal length of re-

sponse fields and material itself. The intrinsic temporal scale can be estimated by requiring the two major

terms in the equation of motion (15), i.e. elastic and viscous contributions, to be of the same order, which

yields

tr ¼ OfminðkV e
ijklk=kLe

ijklkÞg ð67Þ

where k � k means the norm of �; tr is the characteristic length of macroscopic reference time scale.

Physically, the ratio defined in (67) characterizes the rate of creep behavior. Note that the thermal dilation

effect is typically very small and inertial force is assumed to be not in dominance.

For the energy equation, we denote the characteristic length of the intrinsic temporal scale in thermal

fields as t̂tr. To quantify t̂tr, we require the first two terms in the energy equation (18), i.e. the specific heat

increase and thermal conductivity term, are of the same order, which yields

l̂ladv ¼ minft̂trkke
ijk=kk

ekg1=2 ð68Þ

where l̂ladv represents the heat front advance during the time elapse t̂tr. Then, we can infer by such reasoning

that, when l̂ladv P l, the heat front has swept through the unit cell during t̂tr so that all the heat fluctuations
generated before the start of t̂tr has been smoothed out in the unit cell, and thus the homogenized thermal

Table 2

Validity of the homogenized solutions (m, n ¼ 1; 2; 3; . . . ; e � 1)

Thermal fields Mechanical fields

el ¼ em, es ¼ e el ¼ e, es ¼ em el ¼ em, s0=tr P 1

el ¼ en, es ¼ e Valid Valid Invalid

el ¼ e, es ¼ en Valid Valid Invalid

el ¼ en, s0=tr P 1 Valid Valid Invalid
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fields could be reached provided that no more heat is generated during t̂tr. In this sense, t̂tr can be ap-

proximated as

t̂tr � O l2=minfkke
ijk=kk

ekg
� �

ð69Þ

4. Numerical examples

In this section, we first study the thermo-mechanical behavior of a one-dimensional biphasic bar. Ref-

erence solutions are obtained by using a very fine mesh, whose grid size is chosen to resolve the features of
the microstructure. The classical spatial homogenization solution (Francfort and Suquet, 1986) is also

computed and compared to the present spatial–temporal homogenization. As a second example, we con-

sider a simple three-dimensional model. In both numerical examples, the inertia force is set to be very small

in comparison with the elastic and viscous effects so that the quasi-static problems could be considered.

4.1. One-dimensional example

Consider a biphasic bar with the periodic local structures as shown in Fig. 1. The cross-sectional area of

the bar is assumed to be unity. The volume fractions of two phases are denoted by d1 for phase H1 and d2
for phase H2, such that d1 þ d2 ¼ 1 and H1 [ H2 ¼ H. In the one-dimensional example, j H j¼ l where l is
the length of the unit cell. Material properties of each phase are denoted as follows: Young�s modulus at

initial temperature Eini, thermal sensitivity of Young�s modulus Aini, viscosity at initial temperature V ini,
thermal sensitivity of viscosity Bini, thermal expansion coefficient a, thermal conductivity k, density q, and
specific heat per unit mass c. Thermal sensitivity of material properties and the thermal expansion effects

are both neglected. The following material properties are selected:

Geometry: L ¼ 200 mm; l ¼ 1 mm; d1 ¼ 0:4; d2 ¼ 0:6

Phase 1: Eini
1 ¼ 40 GPa; V ini

1 ¼ 80 GPas; Aini
1 ¼ 0; Bini

1 ¼ 0; a1 ¼ 0; q1 ¼ 2200 kg=m3;

c1 ¼ 1500 J=kgK; k1 ¼ 50 W=mK

Phase 2: Eini
2 ¼ 4 GPa; V ini

2 ¼ 20 GPas; Aini
2 ¼ 0; Bini

2 ¼ 0; a2 ¼ 0; q2 ¼ 1100 kg=m3;

c2 ¼ 3000 J=kgK; k2 ¼ 10 W=mK

The adiabatic boundary conditions are imposed on the bar so that no heat transfer occurs between the bar

and the ambience. Also, we eliminate the body force b1 and the input heat supply Q so that mechanical

dissipation is the only heat source. We further assume that the initial temperature T0 ¼ 300 K is uniform

throughout the bar. The bar is subjected to the cyclic displacement boundary condition given as

uðx ¼ 0; tÞ ¼ 0:5�uuð1� cos 2pxtÞ ð70Þ

where �uu and x are the loading parameters.

Fig. 1. One-dimensional bar and the associated unit cell.
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With the above definitions, three linear unit cell problems defined in (43), (52) and (53) could be solved

analytically by imposing periodic Dirichlet boundary conditions on the unit cell domain. The results are

summarized below:

l1 ¼
d2ðk2 � k1Þ
d1k2 þ d2k1

y; w1 ¼
d2ðEini

2 � Eini
1 Þ

d1Eini
2 þ d2Eini

1

y; v1 ¼
d2ðV ini

2 � V ini
1 Þ

d1V ini
2 þ d2V ini

1

y

l2 ¼
d1ðk1 � k2Þ
d1k2 þ d2k1

ðy � lÞ; w2 ¼
d1ðEini

1 � Eini
2 Þ

d1Eini
2 þ d2Eini

1

ðy � lÞ; v2 ¼
d1ðV ini

1 � V ini
2 Þ

d1V ini
2 þ d2V ini

1

ðy � lÞ
ð71Þ

The homogenized mechanical and thermal field equations for the one-dimensional example are given as

�rr0
11;x ¼ 0

mechanical fields: �rr0
11 ¼ Ee011 � �bbh0 þ V _ee011 þ Kw0

11

�aaw0
11;t þ �bbw0

11 ¼ ��ff e011 � �gge011;t þ �hhh0; w0
11ðt ¼ 0Þ ¼ 0

ð72Þ

thermal fields: �kkh0
;t ¼ ð�kkh0

;xÞ;x þ
1

l

Z l

0

ðV _ee011 _ee
0
11 � T0b _ee011Þdy ð73Þ

where the homogenized coefficients in one-dimensional case, i.e. E, �bb, V , K and �kk, are given in (63) and (66);

the one-dimensional local parameters n, f, g and c in (63) and (66) can be obtained from (58) along with the

solution (71) for the unit cell problems; one-dimensional local average parameters �aa, �bb, �ff , �gg and �hh are given

in (55).

The reference time scale tr for the mechanical and t̂tr for thermal fields can be evaluated by (67) and (69)
respectively, which yields tr ¼ Oð1Þ s and t̂tr ¼ Oð10�1Þ s. The response of the bar under one-cycle loading,
i.e. xt 2 ½0; 1� in (70) with �uu ¼ 0:04 mm and x ¼ 0:1, 1, and 10 rad/s, are shown in Figs. 2–4. The reference

solutions are obtained by using very fine mesh in the heterogeneous model and then taking volume average

over the unit cell domain. In Fig. 2 we consider x ¼ 0:1 rad/s which gives s0 ¼ 10 s and thus es > 1 for both

mechanical and thermal fields. It can be seen that in this case the present formulation errs badly while the

solution obtained by the classical spatial homogenization, which needs the existence of el only, is in good

agreement with the reference solution. Fig. 3 illustrates a mixed case, where s0 ¼ 1 s and thus es ¼ Oð10�1Þ
for the mechanical field, while es > 1 for the thermal field. The numerical results show that the present
space–time homogenization provides a good approximation to the reference solutions. This is consistent

with the observations made in Section 3 and Table 2. In Fig. 3, s0 is further reduced to 0.1 s and in this case

we have es ¼ Oð10�2Þ in the mechanical field and es ¼ Oð10�1Þ in the thermal field. Excellent agreement

between the reference solutions and the present formulation can be observed.

4.2. Three-dimensional example

We consider a single ply of unidirectionally reinforced fibrous composite subjected to the uniform

pressure as shown in Fig. 5. Fibers are assumed to be aligned in X direction and the ply is supported by a

rigid foundation. We further assume that the thickness (10 mm in Z direction) of the ply is very small

compared with the size in other two dimensions (X and Y directions). Thus the thermo-mechanical response
of the composite ply can be described by a stack of unit cells along Z direction subjected to the periodic

boundary conditions in X and Y directions. The finite element model of the unit cell is shown in Fig. 5.
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We assume that each phase in the unit cell is isotropic and homogeneous. The material properties are
summarized below:

Fiber: Eini
1 ¼ 37:92 GPa; mini1 ¼ 0:21; V ini

1 ¼ 6 GPas; a1 ¼ 1� 10�6 K�1; q1 ¼ 2200 kg=m3;

c1 ¼ 1 kJ=kgK; k1 ¼ 0:2 W=mK; d1 ¼ 0:267

Matrix: Eini
2 ¼ 6:89 GPa; mini2 ¼ 0:33; V ini

2 ¼ 3 GPas; a2 ¼ 5� 10�5 K�1; q2 ¼ 1100 kg=m3;

c2 ¼ 2 kJ=kgK; k2 ¼ 1 W=mK; d2 ¼ 0:733

where mini is Poisson�s ratio at initial temperature, we assume that the thermal sensitivities for elastic stiffness
and viscosity are: Aini

ijkl ¼ �0:01Lini
ijkl and Bini

ijkl ¼ �0:05V ini
ijkl. The adiabatic boundary conditions are imposed

Fig. 2. Loading profile and mechanical/thermal responses for the one-dimensional example (x ¼ 10 rad/s, 0.1 Hz).
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on the ply, and the body force bi and the heat supply Q are set to zero. The initial temperature T0 ¼ 300 K is

assumed to be uniform throughout the ply. As shown in Fig. 5, the displacement boundary condition in the

form of

uðx ¼ 0; tÞ ¼ 0:5�uuð1� cos 2pxtÞ ð74Þ

is applied in Z direction on the free boundary, where �uu and x are the loading parameters.

The reference solution obtained by deploying a very fine mesh in the three-dimensional strip is compared

against the homogenized solution. The simulation results of one-cycle 10-Hz loading are plotted in Figs. 6
and 7, where the loading history and the corresponding comparisons between the reference solutions and

the homogenized solutions of end force, temperature change and stress component are illustrated. It can be

seen that the dilation effect offsets the temperature increase in the unloading phase. In Fig. 8, the distri-

bution of the residual stress r0
33 in the unit cell right after the one-cycle loading, which is reconstructed from

the homogenized solution (60), compares well with the reference solution.

Fig. 3. Loading profile and mechanical/thermal responses for the one-dimensional example (x ¼ 1 rad/s, 1 Hz).
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5. Summary and future research directions

A multiscale space–time asymptotic homogenization procedure for analyzing multiple physical processes

interacting at multiple spatial and temporal scales is developed and applied to the coupled thermo-visco-
elastic composites. Rapidly varying spatial and temporal scales are introduced to capture the oscillations

induced by local heterogeneities at diverse time scales. The homogenized initial-boundary value problem

along with the homogenized constitutive equations are derived using the double scale asymptotic analysis in

space and time. It is shown that the additional long-term memory induced by homogenization process can

be obtained by solving a first order initial value problem as opposed to solving initial-boundary value

problem in the unit cell domain in the case of the classical spatial homogenization.

We have identified two diverse time scales resulting from the input excitations and rate dependent

material behavior. Further investigation reveals higher order terms in the asymptotic expansions grow

Fig. 4. Loading profile and mechanical/thermal responses for the one-dimensional example (x ¼ 0:1 rad/s, 10 Hz).
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unbounded in time and will affect the accuracy of the first order homogenized solutions when the obser-

vation time window is long enough. A regularization scheme to suppress this secular time dependence has

been recently proposed for wave propagation problems in elastic heterogeneous solid (Chen and Fish, in

press). The applicability of this regularization scheme for the present model will be investigated in the future

work.

Fig. 5. Composite plate and the associated unit cell.

Fig. 6. Loading history and the end force obtained with the homogenized and reference solutions.
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Appendix A

In this section, we summarize the results of Oðe0Þ homogenized solutions corresponding to different
combinations of spatial and temporal length scales as shown in Table 2. We start by introducing the av-

Fig. 7. Temperature and stress r0
33 obtained with the homogenized and reference solutions.

Fig. 8. Distribution of the local residual stress r0
33 right after the loading.
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eraging operator in the time domain with fast temporal oscillating variable s. According to Francfort

(1983), it requires

lim
ŝs!1

1

ŝs

Z s

0

f ðsÞds exist and be finite ðA:1Þ

In the Laplace transformed domain, (A.1) is equivalent to

lim
s!0

s ~ff ðsÞ exist and be finite ðA:2Þ

where s is the variable in the transformed domain corresponding to s; ~ff ðsÞ is Laplace transformation of

function f ðsÞ.

A.1. Thermal fields: el ¼ en, es ¼ e

A.1.1. Mechanical fields: el ¼ em, es ¼ e
The Oðe0Þ order equation of motion and energy equation can be expressed as

qe€uu0i ¼ r0
ij;xj

þ rm
ij;yj

þ bi

keð _hh0 þ h1
;sÞ ¼ q0i;xi þ q1i;yi þ V e

ijkl _ee
0
ij _ee

0
kl � T0b

e
ij _ee

0
ij

ðA:3Þ

where u0i and h0 are both independent of the fast varying variables and represent the macroscopic dis-
placement and temperature change; the Oðe0Þ order stress r0

ij and strain rate _ee0kl take the following form

r0
ij ¼ Le

ijkle
0
klx þ V e

ijkl _ee
0
kl � be

ijh
0

_ee0kl ¼ e0klx;t þ emþ1
kly;s

ðA:4Þ

where emþ1
kly;s is obtained by solving a linear unit cell problem with periodic boundary conditions

Le
ijkle

0
klx

n
þ V e

ijklðe0klx;t þ emþ1
kly;sÞ � be

ijh
0
o

;yj
¼ 0 ðA:5Þ

Following (46) and (57), the solution of (A.5) is given as

emþ1
kly;sðx; y; tÞ ¼ nklmnðx; y; tÞe0mnx þ fklmnðx; y; tÞe0mnx;t � gklðx; y; tÞh0 þ cklmnðx; y; tÞw0

mn ðA:6Þ

where the four time-dependent parameters nklmn, fklmn, gkl and cklmn are defined in (58). To this end, we

conclude that the present local constitutive equation (A.4) is identical to (60). Making use of the ho-
mogenization process for Oðe0Þ equation of motion in Section 2.3.4 leads to the same homogenized

equation of motion:

�qq€uu0i ¼ �rr0
ij;xj

þ bi ðA:7Þ

and the associated homogenized constitutive equation

�rr0
ij ¼ �LLijkle0klx þ V ijkle0klx;t � �bbijh

0 þ Kijklw0
kl ðA:8Þ

where the homogenized coefficients in (A.8) are defined in (63).

For the Oðe0Þ energy equation, the heat flux q0i is determined by

q0i ¼ ke
ijðh

0
;xj
þ hn

;yj
Þ ðA:9Þ

where hn
;yj

is obtained by solving a linear unit cell problem
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ke
ijðh

0
;xj

n
þ hn

;yj
Þ
o

;yi
¼ 0 ðA:10Þ

Following (41)–(44), we have

hn
;yj
ðx; y; tÞ ¼ li;yjðyÞh

0
;xi

and q0i ¼ ke
ijðdjk þ lk;yjðyÞÞh

0
;xk

ðA:11Þ

where liðyÞ is defined in (43). The homogenized energy equation is obtained by applying the spatial and

temporal averaging processes, (56) and (A.2), to the second equation in (A.3) and making use of (A.11) so

that

�kk _hh0 ¼ ð�kkijh0
;xj
Þ;xi þ Qþ hV e

ijkl _ee
0
ij _ee

0
kli � T0hbe

ij _ee
0
iji ðA:12Þ

where all the quantities have the same definitions as those in (64).

A.1.2. Mechanical fields: el ¼ e, es ¼ em

Comparing this case to Section A.1.1, the only difference is in the Oðe0Þ order equation of motion

qeð€uu0i þ u2mi;ssÞ ¼ r0
ij;xj

þ r1
ij;yj

þ bi ðA:13Þ

where €uu0i and h0 are both independent of the fast varying variables and represent the macroscopic dis-

placement and temperature change; r0
ij is defined in (A.4). Since u2mi;ss vanishes due to the temporal averaging

(A.2), and both rm
ij;yj

in (A.3) and r1
ij;yj

in (A.13) have no contribution to the homogenized equation of

motion due to local periodicity, the Oðe0Þ order homogenized equations in the present case are identical to

those in Section A.1.1.

A.1.3. Mechanical fields: el ¼ em, s0=tr P 1

The Oðe0Þ order equation of motion and energy equation can be expressed as

qe€uu0i ¼ r0
ij;xj

þ rm
ij;yj

þ bi

keð _hh0 þ h1
;sÞ ¼ q0i;xi þ q1i;yi þ V e

ijkl _ee
0
ij _ee

0
kl � T0b

e
ij _ee

0
ij

ðA:14Þ

where €uu0i and h0 are both independent of the fast varying variables and represent the macroscopic dis-

placement and temperature change; the Oðe0Þ order stress tensor r0
ij and strain rate tensor _ee0kl take the

following form

r0
ij ¼ Le

ijkl

�
þ V e

ijkl

o

ot

�
ðe0klx þ emklyÞ � be

ijh
0

_ee0kl ¼ e0klx;t þ emkly;s

ðA:15Þ

where emkly is determined by a local initial-boundary problem

Le
ijkl

�	
þ V e

ijkl

o

ot

�
ðe0klx þ emklyÞ � be

ijh
0



;yj

¼ 0 ðA:16Þ

(A.16) is in the similar form as those obtained by spatial homogenization (Francfort and Suquet, 1986;

Sanchez-Palencia, 1980; Tartar, 1990). For the Oðe0Þ energy equation, the heat flux q0i is determined by
(A.11). The homogenized energy equation has the same form as (A.12), but the definition of _ee0ij follows
(A.15). In this case, it is shown that the homogenized solutions obtained in Section 2.3.4 are not valid.
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A.2. Thermal fields: el ¼ e, es ¼ en

A.2.1. Mechanical fields: el ¼ em, es ¼ e
In this case, the Oðe0Þ order equation of motion and its homogenized solutions are the same as those in

Section A.1.1. For the Oðe0Þ energy equation,

keð _hh0 þ hn
;sÞ ¼ q0i;xi þ q1i;yi þ V e

ijkl _ee
0
ij _ee

0
kl � T0b

e
ij _ee

0
ij ðA:17Þ

where strain rate _ee0ij is given in (A.4); the heat flux q0i is determined by

q0i ¼ ke
ijðh

0
;xj
þ h1

;yj
Þ ðA:18Þ

and h1
;yj

can be obtained by solving a linear unit cell problem

ke
ijðh

0
;xj

n
þ h1

;yj
Þ
o

;yi
¼ 0 ðA:19Þ

Following (41)–(44), we have

h1
;yj
ðx; y; tÞ ¼ li;yj

ðyÞh0
;xi

and q0i ¼ ke
ijðdjk þ lk;yjðyÞÞh

0
;xk

ðA:20Þ

where liðyÞ is defined in (43). The homogenized energy equation is obtained by applying the spatial and
temporal averaging processes to (A.17) and making use of (A.20) so that

�kk _hh0 ¼ ð�kkijh0
;xj
Þ;xi þ Qþ hV e

ijkl _ee
0
ij _ee

0
kli � T0hbe

ij _ee
0
iji ðA:21Þ

where all the quantities have the same definitions as those in (64).

A.2.2. Mechanical fields: el ¼ e, es ¼ em

In this case, the Oðe0Þ order equation of motion and its homogenized solutions are the same as those in

Section A.1.2, while the Oðe0Þ order energy equation and its homogenized solutions are the same as those in

Section A.2.1.

A.2.3. Mechanical fields: el ¼ em, s0=tr P 1

The homogenized equation of motion and energy equation in this case are the same as those obtained in

Section A.1.3. Our solutions in Section 2.3.4 are not valid in this case.

A.3. Thermal fields: el ¼ en, s0=tr P 1

A.3.1. Mechanical fields: el ¼ em, es ¼ e
In this case the Oðe0Þ order equation of motion and its homogenized solutions are the same as those

obtained in Section A.1.1. The Oðe0Þ order energy equation can be obtained by removing h1
;s in (A.5) and

the homogenized energy equation is the same as that in Section A.1.1 since h1
;s vanishes due to temporal

averaging.

A.3.2. Mechanical fields: el ¼ e, es ¼ em

In this case the Oðe0Þ order equation of motion and its homogenized solutions are the same as those

obtained in Section A.1.2. The Oðe0Þ order energy equation can be obtained by removing h1
;s in (A.5) and

the homogenized energy equation is the same as that in Section A.1.1.

A.3.3. Mechanical fields: el ¼ em, s0=tr P 1

Similar to Section A.2.3, our homogenized solutions in Section 2.3.4 are not valid in this case.

Q. Yu, J. Fish / International Journal of Solids and Structures 39 (2002) 6429–6452 6451



References

Bensoussan, A., Lions, J.L., Papanicolaou, G., 1978. Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam.

Boutin, C., Wong, H., 1998. Study of thermosensitive heterogeneous media via space–time homogenisation. Eur. J. Mech. A/Solids 17,

939–968.

Chen, W., Fish, J., in press. A dispersive model for Wave propagation in periodic composites based on homogenization with multiple

spatial and temporal scales. J. Appl. Mech.

Fish, J., Belsky, V., 1995. Multi-grid method for periodic heterogeneous media. Part 2. Multiscale modeling and quality control in

multidimensional case. Comput. Meth. Appl. Mech. Eng. 126, 17–38.

Francfort, G.A., 1983. Homogenization and linear thermoelasticity. SIAM J. Math. Anal. 14, 696–708.

Francfort, G.A., Suquet, P.M., 1986. Homogenization and mechanical dissipation in thermo-viscoelasticity. Arch. Rational Mech.

Anal. 96, 265–293.

Galka, A., Telega, J.J., Wojner, R., 1992. Homogenization and thermo-piezoelectricity. Mech. Res. Commun. 19 (4), 315–324.

Glicksman, M.E., 2000. Diffusion in Solids: Field Theory, Solid-state Principles, and Applications. John Wiley & Sons, New York.

Iesan, D., Scalia, A., 1996. Thermoelastic Deformation. Kluwer Academic Publishers, Amsterdam.

Kevorkian, J., Bosley, D.L., 1998. Multiple-scale homogenization for weakly nonlinear conservation laws with rapid spatial

fluctuations. Stud. Appl. Math. 101, 127–183.

Sanchez-Palencia, E., 1980. Non-homogeneous Media and Vibration Theory. Springer-Verlag, Berlin.

Suquet, P.M., 1987. Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palencia, E., Zaoui, A. (Eds.),

Homogenization Techniques for Composite Media. Springer-Verlag, Berlin, pp. 193–278.

Tartar, L., 1990. Memory effects and homogenization. Arch. Rational Mech. Anal. 111, 121–133.

Yi, Y.M., Park, S.H., Youn, S.K., 1998. Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int. J.

Solids Struct. 35, 2030–2055.

Yu, Q., Fish, J., submitted for publication. Multiple temporal scale analysis for visco-elastic and viscoplastic materials. Int. J. Numer.

Meth. Eng.

6452 Q. Yu, J. Fish / International Journal of Solids and Structures 39 (2002) 6429–6452


	Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem
	Introduction
	Multiple time scales induced by the interaction of multiple physical processes
	Multiple time scales induced by the difference between the frequency of the response fields and the material intrinsic time scale
	Multiple time scales induced by multiple spatial scales

	Space-time multiple scale analysis for the coupled thermo-viscoelastic composite
	Definition of multiple spatial and temporal scales
	Initial-boundary value problem statement for the coupled thermo-viscoelastic composites
	Double scale asymptotic analysis in space and time
	O(&epsiv;-4) and O(&epsiv;-3) equations
	O(&epsiv;-2) equation
	O(&epsiv;-1) equation
	O(&epsiv;0) equation


	Validity of the homogenized solutions
	Numerical examples
	One-dimensional example
	Three-dimensional example

	Summary and future research directions
	Acknowledgements
	Appendix A
	Thermal fields: &epsiv;l=&epsiv;n, &epsiv;tau=&epsiv;
	Thermal fields: &epsiv;l=&epsiv;, &epsiv;tau=&epsiv;n
	Thermal fields: &epsiv;l=&epsiv;n, tau0/tr&ges;1
	References






