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Abstract

A systematic approach for analyzing multiple physical processes interacting at multiple spatial and temporal scales is
developed. The proposed computational framework is applied to the coupled thermo-viscoelastic composites with
microscopically periodic mechanical and thermal properties. A rapidly varying spatial and temporal scales are intro-
duced to capture the effects of spatial and temporal fluctuations induced by spatial heterogeneities at diverse time scales.
The initial-boundary value problem on the macroscale is derived by using the double scale asymptotic analysis in space
and time. It is shown that an extra history-dependent long-term memory term introduced by the homogenization
process in space and time can be obtained by solving a first order initial value problem. This is in contrast to the long-
term memory term obtained by the classical spatial homogenization, which requires solutions of the initial-boundary
value problem in the unit cell domain. The validity limits of the proposed spatial-temporal homogenized solution are
established. Numerical example shows a good agreement between the proposed model and the reference solution
obtained by using a finite element mesh with element size comparable to that of material heterogeneity.
© 2002 Published by Elsevier Science Ltd.
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1. Introduction

The primary objective of the manuscript is to develop a systematic approach for analyzing multiple
physical processes interacting at multiple spatial and temporal scales. The interacting physical processes
may include mechanical, thermal, diffusion, chemical and electromagnetic ficlds. Most often these pheno-
mena are treated as being uncoupled; hence, few separate analyses of the same system are typically per-
formed for the complete prediction of the response. It is, however, understood that such treatments should
be regarded as first order approximations to the real complex interactions.

* Corresponding author.

0020-7683/02/$ - see front matter © 2002 Published by Elsevier Science Ltd.
PII: S0020-7683(02)00255-X



6430

Table 1

Physical processes interaction matrix
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Deformation (displace-
ments)

Thermal expansion E
Clustering, precipitation
(eigenstrains) E

Reaction products ac-

Deformation induced
heat production E

Heat transfer (tempera-
ture)

Diffusant concentration
controlled heat transfer
C

Heat production during

Strain controlled diffu-
sion C

Temperature controlled
diffusion C

Diffusion (diffusant
concentration)

Transport of reaction

Strain controlled chem-
ical activity C

Temperature controlled
chemical activity C

Transport of reactants
E

Chemical reactions

Deformation induced
electric and magnetic
flux E

Temperature controlled
electric and magnetic
behavior C

Diffusion induced elec-
trical and magnetic po-
tentials E

Reaction products in-

commodation (eigen- chemical reactions E
strains) E
Deformation due to

Lorentz force E

products E duced electric and mag-
netic flux E
Heat input from Joule Electro-magnetism

heating E

Transport of charged
particles E

Electro-magnetic field
controlled chemical ac-
tivity C

The coupling of mechanical, thermal, diffusion, chemical and electromagnetic fields (stress/strain, tem-
perature, concentration, current) occurs through diverse phenomena, some of which are depicted in the
interaction matrix shown in Table 1. The interaction matrix is “‘non-symmetric”, with cell (i, j) representing
the phenomenon induced by the process corresponding to field i and which influences field j. For instance,
cell (1,2) represents heating due to plastic deformation, while cell (2, 1) corresponds to thermal expansion
and thermal stresses. A fully coupled analysis would consider all processes shown in the matrix, while fully
uncoupled approach would only consider the diagonal entries. A one-way (or partially) coupled approach
would consider a lower (or upper) triangular entries in the interaction matrix.

It is important to note that coupling of various physical processes in the mathematical model can be
carried out either by considering additional terms in the field equations (equation coupling) or by allowing
the constitutive law to depend on the interacting field (constitutive law coupling). An example of the first
category is the effect of the temperature gradient on the stress field, which can be captured by adding a
thermal stress term to equilibrium equations. A less familiar example within the same class of problems is
the effect of diffusion (clustering) and chemical reactions (reaction products) on the stress field, which can
be accounted for by the eigenstrain formulation (Fish and Belsky, 1995). An example from the second
category is the influence of temperature upon diffusion which can be captured by simply considering the
diffusion coefficients to be temperature dependent. Symbols E and C in Table 1 stand for the technique to
be used for coupling the respective phenomenon, with E standing for “equation coupling” and C desig-
nating “constitutive law coupling”.

Multiple length scales may exist in both space and time domains. To model spatial length scales induced
by a spatial heterogeneity a small positive scaling parameter ¢; is introduced so that a local coordinates y
can be identified and related to the global reference coordinates x by

(1)

The response fields are then assumed to be the function of (x,y) which represents the dependence on the
local oscillations induced by the spatial heterogeneity in the vicinity of the macroscopic point. The value of
g and thus the validity of the spatial homogenization approach has been shown to depend on the following
four factors (Fish and Belsky, 1995): (a) the size of the unit cell, (b) the volume fraction, (c) the mismatch of
properties between micro-constituents, and (d) the macroscopic spatial gradients. The latter two factors
imply that ¢ might be different for various physical processes.

y=2x/e
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To characterize the fast varying features of response fields in time domain, we assume that there exists a
small positive scaling parameter ¢, so that a fast time coordinate t can be identified and defined as

T=t/e (2)

where ¢ is a natural time coordinate. In contrast to the spatial scale separation, which is typically induced by
a spatial heterogeneity, multiple time scales can be attributed to the following three factors (and their
combinations):

1.1. Multiple time scales induced by the interaction of multiple physical processes

For illustration consider the stress-driven diffusion problem (Glicksman, 2000) in a one-dimensional
periodic heterogeneous medium:

6,=0

mechanical field: ¢ = E{u, — o(C — Co)} (3)

diffusion process: C = {D(C, — Cro,)}, (4)

u(x =0) = upsin(2rwt); ulx=L)=0

BCs and IC: Clt=0) = Gy (5)

where ¢ denotes the stress; u the displacement field; C the concentration of solute; C, the initial concen-
tration of solute; E the Young’s modulus; ¢ the diffusion expansion coefficient; x the material constant; D
the diffusivity coefficient; and L the length of the model. The comma followed by a subscript variable
denotes a partial derivative and superscribed dot stands for the time derivative. Material properties E, ¢, D
and x take different values in distinct material phases.

Due to the linearity, the frequency of the mechanical response fields in (3) is the same as the loading
frequency. For stress-driven diffusion process the diffusion driven force DCxa , is oscillatory with frequency
w, while the diffusion rate is dominated by the diffusivity coefficient and material heterogeneity, which
might be much slower than the oscillation of the driving force. The intrinsic diffusion time scale can be
estimated by the time elapse ¢, for a solute particle traveling throughout the unit cell. From (4), we have

t, = O{min(7*/D)} (6)

where [ is the length of the unit cell. Due to local periodicity, it follows from (6) that all the unbalance of
concentration prior to the time elapse #, is balanced throughout the model during #,. Thus the time scaling
parameter ¢, is defined as the ratio between the period of mechanical oscillation (1/w) and the intrinsic
diffusion time scale ¢, i.e.

& =1/t (7)
Thus the second time scale is introduced due to the interaction of physical processes provided that the

mechanical oscillation is at a significantly higher frequency than the diffusion process (i.e., & < 1).

1.2. Multiple time scales induced by the difference between the frequency of the response fields and the material
intrinsic time scale

As an illustrative example consider a rate-dependent material (Kelvin—Voigt type viscoelastic solid)
under cyclic loading in one-dimension:
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o,=0
T : (8)
o=FEu,— Vi,
where V' denotes viscosity. The boundary conditions are assumed to be the same as those defined in (5). The
frequency of the mechanical response is @ due to the linearity, while the material intrinsic time scale is
governed by #. = V/E, which represents the rate of creep behavior (Yu and Fish, submitted for publica-
tion). The resulting time scaling parameter directly follows from (7).

1.3. Multiple time scales induced by multiple spatial scales

A typical example for this case is a dispersion phenomenon resulting from the wave propagation in
heterogeneous media. The spatial scaling parameter ¢ is a consequence of disparity between the wave
length and the unit cell size. For the details of this problem, we refer to Chen and Fish (in press).

In this paper attention is restricted to multiple time scales induced by the interaction of multiple physical
processes. For demonstration purposes we consider an initial-boundary value problem for the thermo-
viscoelastic composite. It consists of two spatial scales (micro-constituents and the macro-domain), two
temporal scales (the time scale associated with an applied loading and the intrinsic time scale of the rate-
dependent material) and two fully coupled physical processes (thermal and mechanical). Both the con-
stitutive law coupling due to thermally sensitive material properties and the equation coupling induced by
thermal stresses are taken into account for mechanical fields. For thermal fields, on the other hand, we
assume that only the equation coupling occurs due to the mechanical dissipation and dilation effects.

To model the local oscillations of mechanical and thermal fields induced by spatial heterogeneities at
diverse time scales, an asymptotic homogenization theory for multiple physical processes with multiple
spatial and temporal scales is developed. When the loading is highly oscillatory in comparison with the
material intrinsical time scale it is natural to incorporate a rapidly varying time scale in the asymptotic
analysis. This fast time variable is defined to characterize the fast varying features of mechanical and
thermal response fields in time domain.

Homogenization with multiple temporal scales could be traced back to Bensoussan et al. (1978) where
the convergence analyses of the hyperbolic equations with oscillatory coefficients were established.
Francfort (1983) generalized the conventional spatial homogenization method to the case of thermo-elastic
composites. For the hyperbolic conservation law with rapid spatial fluctuations, Kevorkian and Bosley
(1998) showed that the continuous initial data which is independent on the fast temporal scale may in-
troduce a dependence on both fast spatial and temporal scales in the homogenized solutions. A handful of
recent publications on this topic has been briefly reviewed in Chen and Fish (in press), where the role of
multiple temporal scales in wave propagation in heterogeneous solids was investigated.

In Section 2 we start our presentation with a general setting of the initial-boundary value problem for the
fully coupled Kelvin—Voigt thermo-viscoelastic composite. In addition to the usual space—time coordinates
rapidly varying spatial and temporal scales are introduced to capture the effects of spatial, and temporal
fluctuations. The macroscopic initial-boundary value problem is obtained by the double scale asymptotic
analysis in space and time. It is shown that an extra long-term memory obtained from solving a first order
initial value problem in macroscopic field is introduced into the homogenized solution. For the homo-
genization of viscoelastic heterogeneous media, it has been revealed that in addition to the original
memories due to the viscosity of micro-constituents, an extra long-term fading memory is induced by the
homogenization process. This phenomenon has been illustrated in Francfort and Suquet (1986), Galka et al.
(1992), Glicksman (2000) and Iesan and Scalia (1996) for ecither Kelvin—Voigt or Maxwell viscoelastic
model with only instantaneous memories in the micro-constituents. This extra long-term memory in the
homogenized constitutive equation arises due to the interactions between fast spatial variation and time
dependence of the coefficients of partial differential equations. We remark that all these studies were based
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on the spatial homogenization only and the history-dependent integral kernel associated with the long-term
memory is determined by a local initial-boundary value problem in the unit cell domain (Francfort and
Suquet, 1986; Suquet, 1987). In this manuscript we show that the extra long-term memory term resulting
from the homogenization process in space and time can be obtained by solving a first order initial value
problem. This is in contrast to the long-term memory term obtained by the classical spatial homogeniza-
tion, which requires solution of the initial-boundary value problem in the unit cell domain. This gives rise to
an elegant homogenized solution which can be easily implemented into the numerical setting.

The asymptotic space-time homogenization formulation for the coupled Kelvin—Voigt thermo-visco-
elastic composites is presented in Section 2. In addition to the usual space—time coordinates, rapidly varying
spatial and temporal scales are introduced to capture the effects of spatial and temporal fluctuations. The
macroscopic initial-boundary value problem is obtained by the double scale asymptotic analysis in space
and time. Section 3 discusses various relations between the temporal and spatial scales as well as the validity
of the proposed model. Numerical experiment comparing the proposed model with the classical spatial
homogenization and the reference solution obtained by using a finite element mesh with element size
comparable to that of material heterogeneity is given in Section 4.

2. Space—time multiple scale analysis for the coupled thermo-viscoelastic composite

In the present work, the Kelvin—Voigt viscoelastic model is considered for micro-constituents. In con-
trast to the multiscale analysis conducted by Boutin and Wong (1998), where a single frequency quasi-
harmonic displacement field has been assumed so that the constitutive equation can be transformed to the
elastic-like form, we consider a general setting of the coupled initial-boundary value problem. The dis-
tributed heat source arises due to the mechanical dissipation and the thermal dilation in micro-constituents.
The thermally sensitive mechanical properties (stiffness and viscosity) as well as the thermal dilation term in
the constitutive equation lead to the full coupling between mechanical response and thermal diffusion.

2.1. Definition of multiple spatial and temporal scales

The microstructure of a composite material is assumed to be locally periodic ( Y-periodic) with a scale
parameter ¢ defined by the representative volume element (RVE or unit cell). The macroscopic domain is
represented by Q° while @ denotes the unit cell domain. We assume that RVE exists and its characteristic
size [ is small enough in comparison with the reference length /. on the macroscale so that

=1/l &<l )

In addition to the distinct spatial scales, we can identify at least two temporal scales in a typical thermo-
viscoelastic problem: the time scale associated with the applied loading and the intrinsic time scale of the
rate-dependent material. In the present work, we introduce a fast varying temporal coordinate t to rep-
resent the fast oscillations of mechanical and thermal fields in time domain induced by the highly oscillatory
loading. For linear systems and weakly non-linear systems, the characteristic length of 7 is of the same order
as the period 1y of loading profile (Boutin and Wong, 1998). We assume that the intrinsic time scale ¢,
which is determined by material properties, describes a relatively long-term behavior, and thus the fol-
lowing relations hold:

& =10/t;, & <1 (10)

where ¢, is the characteristic length of the natural time scale denoted by #; ¢, is the small scale parameter
defined in the time domain. We start by considering the special case of
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R RE (11)

Further discussion on the different relations between the temporal and spatial scales as well as on the
validity of the homogenized solution is left to Section 4. It is important to note that the definitions of the
multiple spatial and temporal length scales are physically distinct for the mechanical and thermal fields.

With the definition of the fast varying variables y and 7 as well as the local Y-periodicity assumption, all
the mechanical and thermal response quantities denoted by ¢ can be defined as

d)(yaf) = ¢(_V +Kj)’f) (12)

where y is the basic period vector of the microstructure and K is a 3 by 3 diagonal matrix with arbitrary
integer components. The corresponding &¢Y-periodic function can be defined by using the conventional
nomenclature:

P°(x,1) = Pp(x,p,1,7) (13)
The differentiations with respect to space and time variables can be expressed using the chain rule:
¢i=0,+e'd, and §F=¢,+:'0, (14)

where the comma followed by a subscript variable denotes a partial derivative and superscribed dot denotes
the time derivative. Summation convention for repeated subscripts is adopted except for the subscripts x
and y.

2.2. Initial-boundary value problem statement for the coupled thermo-viscoelastic composites

Attention is restricted to small deformations and small temperature increases. The microscopic con-
stituents are assumed to be homogeneous and their thermo-viscoelastic behavior can be described by the
following initial-boundary value problem in the macroscopic domain Q° (Francfort and Suquet, 1986; Iesan
and Scalia, 1996).

(1) Equation of motion
plilf =, + b (15)
where p° is the density; i#; and ¢}, the displacement and stress components, respectively; ; the body force
component assumed to be independent of the fast varying coordinates.
(2) Constitutive equation

oy = Ligen + Ve — By0° (16)

where ¢j, and &}, denote the strain and the strain rate components, respectively; (° the temperature
change from the initial temperature; L;, and V3, the elastic stiffness and the viscosity tensor compo-
nents, respectively; 8, = Lo, where o}, denotes the coefficient of thermal expansion and f3;;,0° stands
for the components of the thermal stress. We assume that the fourth-rank tensor components L7, and
Viu as well as the second-rank tensor components «;, and f3;, satisfy conditions of symmetry and po-
sitivity. We further assume that Lj,, and V3, are thermally sensitive which lead to the constitutive law
coupling between the mechanical and thermal fields, while «j, is assumed to be insensitive to the
temperature change, i.e. o, = o;;(x, y)

(3) Kinematic equation

ey, = 3(u;; + 1) (17)
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(4) Energy equation
200 = C]f,i +0+ sz;k[ézé{/'élil - TOﬁ;,-é;- (18)

where 1° = pc® and ¢* is the specific heat per unit mass; ¢¢ denotes heat flux; 7; the initial temperature
and Q the heat supply. Both 7; and Q are assumed to be independent of the fast varying coordinates.
The total temperature 7° is given by 7° = Ty + 0°. The mechanical dissipation term V7, é;¢;, and the
dilation induced heat supply To,/)’,.j . fall into the category of equation coupling for the thermal fields.

(5) Linear thermal diffusion
= k0", (19)

l iy

where &;; denotes the thermal conductivity tensor components assumed to be symmetric and positive
definite. Since £}, is insensitive to temperature changes, it is also assumed to be time-independent, i.e.,
ki, = kij(x, ).

(6) Initial and boundary conditions
The non-oscillatory initial conditions at t = 0 and = = 0 are imposed on both time scales, i.e., the initial
state is assumed to be spatially and temporally smooth (Francfort, 1983). The thermo-mechanical
boundary conditions are also assumed to be non-oscillatory and the interfaces between different mi-

croscopic constituents are perfectly bonded.
2.3. Double scale asymptotic analysis in space and time

To solve for the initial-boundary value problem described in Section 2.2, we start by introducing the
following double scale asymptotic expansions:

W= > Uy ;0= > £0"(xp47) (20)
m=0,1,... m=0,1,...

where u and 0" are Y-periodic functions and m denotes the order of the associated component in the
expansion. According to (20) and the chain rule in (14), the asymptotic expansions of strain (17) and the
strain rate can be expressed as

e?j _ Z a"’e’”(x,y, 17‘5); efj — Z &"é m(x », 1, ‘E) (21)

m=-1,0,.. m=-2,—1,...

where, with the definition of symmetric displacement gradients

€ =3 Ji, +up,) and e = (,y/—&—u ), n=0,1,2,... (22)
the strain and strain rate components for various orders of ¢ in (21) are given as

el.;l(x,y, 1) = eg.y, e(x,p,t,71) = e + e;’;l, n=0,1,2,... (23)
and

) 0 ~71 _ 0

eij (x7y7 t’ T) - eij) T ij (x y7t T) - eijyj + (ez/x + ez/v)

-n n+1 n+1 n+2

e(x,p,t,7) = (&, + el ),t ey +ep), n=012... (24)

Consequently, the expansion of the stress field is obtained by substituting the expansions in (22) into the
constitutive equation (16), which gives

oy = Z ama”’(x,y,t,r) (25)

m=-2,—1,..
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where
2 S -1 1
0 (x,y,t,7) = V;;klekl ) 0 (x,p,t,7) = L?jklekl + Vklekl
o (x,y,t,7) = Lier, — B0 + Vigey, n=0,12,... (26)

Similarly, the expansion of the heat flux is obtained by using (19) and (20) such that

q = Z gl (x,y,1,7) (27)
m=—1,0,...
where
ql._l(x,y7 t,7) = kfjeo‘ and ¢!(x,y,t,7) = kfj(Hf;f + 9:;’1), n=0,1,2,... (28)

Having defined the asymptotic expansions for the mechanical and thermal fields, the equation of motion
(15) and the energy equation (18) can be stated in terms of two sets of equations with increasing order of ¢
starting from O(¢*) for the energy equation and O(¢~?) for the equation of motion. Solving these equations
successively yields the O(¢°) initial-boundary value problem and the homogenized constitutive equations.

2.3.1. O(e*) and O(&7?) equations
We first consider the O(¢™*) energy equation

V%'klé,.;zé;f =0 (29)

i

Due to symmetry and positivity of the viscosity tensor V3, as illustrated by Eq. (29), along with Egs. (24)
and (26), leads to
él.;z =€ =0; g, =0 (30)

Since the initial condmons are non-oscillatory it implies e »(%,¢,7=10) =0 and the first equation in (30)
gives ¢!, = 0, Le., u? is independent of y

u) = ul(x,t,7) (31)

With (30), it can be easily shown that the O(¢*) order equation of motion and energy equation are au-
tomatically satisfied.

2.3.2. O(¢7?) equation
The O(¢72) order equations take the following form:

e, 0 _—1
p ui,rf - O-ijy,-

iy + Vi,

ljk

32
el =0 (32)

Integrating the first equatlon in (32) over the unit cell domain and making use of the Y-periodicity of ¢},

and the Y-independence of #? as shown in (31), as well as the non-oscillatory initial conditions, yields

ur‘r_O:u i(xat) (33)

1

Apparently, «° is independent of fast spatial and temporal variables and thus it represents the macroscopic
displacement ﬁeld while its symmetrical gradient e .. represents the macroscopic strain field. With this in
mind along with (24) and (26), the O(¢~2) order equatlon of motion in (32) is reduced to

I/yj (V;]klekl) r) =0 (34)
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which can be further reduced to e;,, . = 0 due to the fact that V3, is symmetric and positive definite and u;,
is Y-periodic. Due to the non-oscillatory initial conditions it follows that

y—0:>u_u(xtr) (35)

i

indicating that u! is independent of y. Based on (33) and (34), the following identities for the strain and

stress fields can be identified:

e[;l =0; ¢'=0; 6.'=0 (36)

i i

Thus the first non-vanishing terms in the expansion of strain, strain rate and stress fields are all O(¢°) order.
As for the O(&72) order energy equation in (32), the simplified form can be obtained by exploiting (28)
and (36) which yields

(ki0%,),, =0 (37)

ij .y

Once again, the symmetry and positivity of ;; as well as the Y-periodicity of 0° provides the solution of (37)
in the form of A

0 =0=0"=0"(x,,7) and ¢ '=0 (38)

Vi

Therefore the first non-vanishing term in the expansion of heat flux ¢¢ also starts from O(&°) order.

2.3.3. O(¢7!) equation
With the solutions obtained from the lower order equations, (36) and (38), the O(¢™!) order equations
take the following form:

e, 1 0
PU = 0y,

39
;LCH?T — q?h ( )

We first consider the O(¢7!) order energy equation. Averaging it over the unit cell domain and utilizing the
Y-periodicity of ¢ and Y-independence of 0°, we have

0° =0=06"=0"(x,1) (40)

Thus, 6° is independent of the fast varying variables and can be viewed as the macroscopic temperature true
change.
Along with (28) and (40), O(¢™!) order energy equation turns into
e 00 1 _
{k (05, + ew)}_” =0 (41)
where, as we assumed in (19), kj; is independent of temperature change, i.e., ki, = k;;(x,p). Due to the
linearity of (41) (6° is mdependent of y), the solution of @' can be expressed by the followmg decomposition

0'(x,,1,7) = ()05, + P(x,1,7) (42)

where P(x,¢,1) is an arbitrary Y-independent function and y,(y) is determined by

{60+t )} =0 in 6 (43)
where 0,, is Kronecker delta. Eq. (43) along with the corresponding periodic boundary conditions repre-
sents a typical linear unit cell problem. Finite element method can be used to solve for this equation (see, for
example, Sanchez-Palencia, 1980). Upon the solutions of (43) and (42), O(&") order heat flux defined in (28)
can be written as
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We now consider O(¢7!) order equation of motion in (39). Using the same considerations as for Eq. (32)
and recalling that u! is independent of y, the O(¢™") order equation of motion provides
um—0:>u = u!(x,1) (45)

It can be seen that u! is independent of the fast varying variables. Consequently, the O(¢~!) order equation
of motion, combined with definitions in (24) and (26) as well as the relations in (33) and (40), turns into

‘7?/% = {L};kleklx + Vz;kl(eklxt + eklv ) — ﬁ;g(’} N =0 (46)
]

According to (33) and (40), we conclude that €, , ¢, , and 6" represent the macroscopic strain, strain rate
and temperature fields which are independent of y and 7. To solve (46) for e,zdy,r in terms of these macro-
scopic response quantities, we recall that Lj;, and V3, have been assumed to be thermally sensitive in the
present work. Following Boutin and Wong (1998) and noting that our attention is restricted to small
temperature changes in comparison with the initial temperature 7,, the thermally sensitive material
properties are defined as

Liyy ~ Lijy(x,3) + 0°(x, )47 (x, )

: 0 (47)

Vi = Vii(x,9) + 0°(x,0)Bjj; (x, y)
where L}, and V%) are elastic stiffness and viscosity tensor components evaluated at the initial temperature;
A;‘;All and B, represent the thermal sensitivity tensor components associated with the elastic stiffness and
viscosity evaluated at the initial temperature, respectively.

As stated in Section 2.1 the thermal expansion coefficient o, is assumed to be independent of temper-
ature change, i.e., o, = of,(x,y). Slnce B, = Liy,%, all the quantities in (46), except for ¢}, ., are known to
be independent of 7. It follows that ek, should be also independent of 7. Following Fish and Belsky (1995)
and considering the temperature change 0" as a state variable determined by the energy equation (evolution
law) we introduce the following decomposition

u%,r(x7y7t7 T) = gkmn(y)( mnx + Wmn) + ﬂkmn(y)( mnxt + Wmnt) + Uk(x7 t? T) (48)

where ¢;,,(v) and ¥y,,(y) are the third-rank tensors which are symmetric with respect to m, n;

wh, = wy,(x,2) and w) = w) (x,t) represent the temperature induced macroscopic strain and strain rate
(eigenstrain and eigenstrain rate), respectively; Ui(x,t,7) is an arbitrary function. The symmetric gradient
of (48) is given as

2 0 0 ,
ekl)@r(xﬂyﬂ t) = lpklmn (y) (emnx + Wmn) + KLklmn (y)( Cnnx,t + Wmn t) (49)

where Y,,,,,(¥) and y,,,..(v) denote the symmetric gradient of ¢,,,,(») and 9,,(y) with respect to y, i.e.

lPklmn = {Ckmn,yl + Clmn‘yk }/2
Lktmn = Okmny, + Fimn,, }/2

To solve for ¢, (¥) and ¥y, (p) as well as for the temperature change induced macroscopic response w°
and d° , we start by substituting (49) into (46), which yields

mn,t>

{(Lj/inn + ljkllpklmn) mnx + Vl;kllpklmn mn 51/90 {;Ekl(ékm(sl” + Xklmn)egnx,t + Vijk[%klmnwgm,t} =0 (51)

Vi

(50)

mn
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Since ¥/, and yy,.., are both assumed to be independent of time and thus temperature change, these two
local concentration functions can be evaluated by the following two linear unit cell problems obtained from
(51) when = 0 so that 0 = 0 and w,, = w), , = 0:

{Lgl:"ﬂ I/ljll;;lpklnln} =0 in@® 52

i

{VitiGundrn + 2um) } =0 in 6 (53
Vi

Again, similarly to (43), the above two linear unit cell problems along with the periodic boundary con-

ditions can be solved for ¢, (y) and ¥,,(»), respectively, by using finite element method. Owing to the Y-

periodicity of L%, and V%), both Y, and y,,,, are also Y-periodic. It can be readily proved that i, and

L ar€ polarization functions whose integrations over the unit cell domain vanish due to the periodicity.

The temperature change induced macroscopic response fields, wy,, and wy, , are obtained by multiplying

(51) with the periodic function 9y, (y) and then integrating it by parts over the unit cell domain, which
leads to the initial value problem for ! :

apqmn (x t) mnt + EP‘I’"" (x7 I)W&n = _j‘qu”‘ (x7 t)egmx - gpqmn (x’ t)eznx,t + ilpq (x’ t)eo (54)
with the initial condition: w?, = 0 and ¢ = 0. The time-dependent coefficients are given as
apqmﬂ <yl_] 1jk17klmn>
qu’l <ylj zjkll//klmn>
qumn <ylqu( ijmn "klwklmn)> (55)
g!’qmﬂ <yszq l_]kl(ék’n(sln + /fklmn»
<yljp¢[ >

and the spatial averaging operator (e) is defined as

I
=g / .do® (56)

where | © | is the volume of the unit cell. The solution of w? from (54) is a history-dependent function
which leads to the long-term fading memory in the macroscopic constitutive equation. In contrast to the
long-term memory induced by the classical spatial homogenization process (Francfort and Suquet, 1986;
Sanchez-Palencia, 1980; Yi et al., 1998), which involves solving an initial-boundary value problem in the
unit-cell domain (see (A.16) in Appendix A), the present long-term memory is obtained by solving the first
order initial value problem at each Gauss-point in the macro-domain.

To this end, (49) can be expressed in a concise form as

eizy,T(L)@ t) = fklmn(xvy7 t) €nx + gk/mn(x s ) mnxr nkl(x7y7t)00 +yklmn(xay7 t)w(y)nn (57)
where
_ —1 5
éklmn = lpklmn - Xklpq(apqij) ﬁf”’”
— —1-
Cklmn = Xktmn — Xklpq(apqij) &ijmn
— —17
My = _Xk/pq(apqij) hij

Vitmn = Witmn — Lkipg (apqij)i bijmn



6440 Q. Yu, J. Fish | International Journal of Solids and Structures 39 (2002) 6429-6452

Finally, we remark that the time-dependence of these four parameters is due to the temperature-dependence
of Lj,, and V.

2.3.4. O(€°) equation
The O(£) order equations of motion and energy, along with (33) and (36), can be written as

1 ‘C +O_l +bl
4 79 (59)

2eA0 ¢ 0.0 )
20" = ‘I,gx, + qi,y,- + O+ Ve en — ToBie;

pu =q°

where the O(¢%) order stress a?j and strain rate é?]. can be obtained from (24), (26), (45) and (57) which gives

. 0
Lz/klekl + z/klekl :31/0
~0 _ 0 0
e,‘j - éijmn mnx (blméjn + é’zjmn) mnx,t ’11/'0 + yijmnwmn

It can be seen that both o7, and &, are independent of t.
For the O(¢) order equation of motion in (59), the volume average over the unit cell domain provides

(60)

pir) = 6?/.,” +b; (61)
where the macroscopic stress is determined by the homogenized constitutive equation

0 _F 0 .0 20,7 0
0, = Lijey, + Vipey, — ﬁijo + Ajawy, (62)

and the homogenized coefficients are given by

p={p)
Ly = (Liyg + ViiunEmst)
7 1=V im o Ok Ot + Contat)) (63)
= (B + Vi)
_l/kl =(V; ijmn Vonnkt)

The O(&”) homogenized energy equation is obtained by averaging the second equation in (59) over the unit
cell domain and making use of (40) and (44)

W = (k) + O+ (Vielédl) — To(Bié)) (64)
where ég. is given in (60); k,-j is the homogenized thermal conductivity given by

kij = (ki (Om + 14,,) (65)
and the average volumetric specific heat 4 is defined as

A= {p'c) (66)

Finally, we remark that the initial and boundary conditions for the components in asymptotic expansions
are defined to satisfy the imposed conditions of the source problem defined in Section 2.2. Thus the initial
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and boundary conditions for the O(¢?) components coincide with those imposed on the source problem,
while the components of higher order of ¢ follow trivial initial and boundary conditions.

3. Validity of the homogenized solutions

In the previous section we have shown that the extra long-term memory in the homogenized constitutive
equation (62) can be obtained by solving a first order initial value problem in the macroscopic domain.
Therefore, the proposed homogenized constitutive model (62) offers significant computational advantages
by eliminating the need for evaluating the local initial-boundary problem associated with the long-term
memory in homogenization processes (Francfort and Suquet, 1986; Yi et al., 1998).

Despite the remarkable simplicity of the present mode, it is important to investigate under what cir-
cumstances the fast temporal scale exists and the homogenized solution is valid. Recall that the homo-
genized solution obtained in Section 2.3 is based on the assumption ¢, ~ ¢, ~ ¢. We have investigated other
relations between the temporal and spatial scales and results of these findings are summarized in Table 2.
The derivation details corresponding to various combinations of multiple spatial and temporal scales are
presented in the Appendix. It is shown that once the fast temporal scale in mechanical fields exists, the
present solution is unconditionally valid; the multiple temporal scales in thermal fields have no effect on the
O(&?) homogenized solutions. On the other hand, when the fast temporal scale does not exist in mechanical
fields, our approach is not valid and the homogenized solutions take the classical form obtained by the
spatial homogenization only (Francfort and Suquet, 1986; Sanchez-Palencia, 1980).

The existence of fast varying temporal scale is determined by the characteristic temporal length of re-
sponse fields and material itself. The intrinsic temporal scale can be estimated by requiring the two major
terms in the equation of motion (15), i.e. elastic and viscous contributions, to be of the same order, which
yields

te = Ofmin(|[ V5, [I/11£411)} (67)

where || o || means the norm of e; # is the characteristic length of macroscopic reference time scale.
Physically, the ratio defined in (67) characterizes the rate of creep behavior. Note that the thermal dilation
effect is typically very small and inertial force is assumed to be not in dominance.

For the energy equation, we denote the characteristic length of the intrinsic temporal scale in thermal
fields as .. To quantify ., we require the first two terms in the energy equation (18), i.e. the specific heat
increase and thermal conductivity term, are of the same order, which yields

Tuaw = min{ || ]1/[12°] 3 (68)

where l,q represents the heat front advance during the time elapse f.. Then, we can infer by such reasoning
that, when /.4, = [, the heat front has swept through the unit cell during #, so that all the heat fluctuations
generated before the start of 7, has been smoothed out in the unit cell, and thus the homogenized thermal

Table 2
Validity of the homogenized solutions (m, n =1,2,3,...;e < 1)
Thermal fields Mechanical fields
g=¢" e =¢ g =¢ & =" g =2¢" 1/t =1
g=8&,¢=¢t Valid Valid Invalid
g =66 ==¢" Valid Valid Invalid

g =¢ t/tr =1 Valid Valid Invalid
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fields could be reached provided that no more heat is generated during #. In this sense, # can be ap-
proximated as

i~ 01/ minf45 111} )

4. Numerical examples

In this section, we first study the thermo-mechanical behavior of a one-dimensional biphasic bar. Ref-
erence solutions are obtained by using a very fine mesh, whose grid size is chosen to resolve the features of
the microstructure. The classical spatial homogenization solution (Francfort and Suquet, 1986) is also
computed and compared to the present spatial-temporal homogenization. As a second example, we con-
sider a simple three-dimensional model. In both numerical examples, the inertia force is set to be very small
in comparison with the elastic and viscous effects so that the quasi-static problems could be considered.

4.1. One-dimensional example

Consider a biphasic bar with the periodic local structures as shown in Fig. 1. The cross-sectional area of
the bar is assumed to be unity. The volume fractions of two phases are denoted by d, for phase ®; and d,
for phase @,, such that d; + d, = 1 and ©, U ©, = O. In the one-dimensional example, | @ |= ! where / is
the length of the unit cell. Material properties of each phase are denoted as follows: Young’s modulus at
initial temperature E™, thermal sensitivity of Young’s modulus 4™, viscosity at initial temperature V™,
thermal sensitivity of viscosity B™, thermal expansion coefficient «, thermal conductivity k, density p, and
specific heat per unit mass ¢. Thermal sensitivity of material properties and the thermal expansion effects
are both neglected. The following material properties are selected:

Geometry: L =200 mm, /=1mm, d, =04, d,=0.6

Phase 1: E™ =40 GPa, V" =80 GPas, 4™ =0, B =0, o, =0, p, = 2200 kg/m’,
c; = 1500 J/kgK, &k =50 W/mK

Phase 2: Ey' =4 GPa, V," =20 GPas, 47" =0, B =0, o, =0, p, = 1100 kg/m’,
¢y = 3000 J/kgK, &k =10 W/mK
The adiabatic boundary conditions are imposed on the bar so that no heat transfer occurs between the bar
and the ambience. Also, we eliminate the body force 5, and the input heat supply Q so that mechanical

dissipation is the only heat source. We further assume that the initial temperature 7, = 300 K is uniform
throughout the bar. The bar is subjected to the cyclic displacement boundary condition given as

u(x =0,7) = 0.5a(1 — cos 2nwt) (70)

where # and w are the loading parameters.

\J

’ L
u(x=0,¢)

(c

B\ B

7>

Fig. 1. One-dimensional bar and the associated unit cell.
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With the above definitions, three linear unit cell problems defined in (43), (52) and (53) could be solved
analytically by imposing periodic Dirichlet boundary conditions on the unit cell domain. The results are
summarized below:

. dz(kz — kl) ) _ dz(Eizm — Eilni) ) B dz(Vzini _ Vlini)
W === ‘/fl—ﬁ% 1~ 7 1sim g 1/im
diks + doky dED + dyE Vit doV o
71
di(ki — k) d\(E — Ef) dy (Vimi — pjni)
H d1k2 + d2k1 (y ) WZ d1E12m + d2E11m (y ) A2 dl I/2ml + d2 I/llm (y )

The homogenized mechanical and thermal field equations for the one-dimensional example are given as

6(1)1,:( = 0
mechanical fields: &), = Ee}, — p0° + V&), + Aw!, (72)
aw(l)l‘t + Bw(l)l = —fe?I - ge(l)l,t +ho"; W(l)l (t=0)=0

- - 1 /!
thermal fields: 26} = (k0",) +7 /0 (Ve) el — Tope, )dy (73)

where the homogenized coefficients in one-dimensional case, i.e. E, f, 7, A and 4, are given in (63) and (66);
the one-dimensional local parameters &, {, # and y in (63) and (66) can be obtained from (58) along with the
solution (71) for the unit cell problems; one-dimensional local average parameters a, b, f, g and & are given
in (55).

The reference time scale ¢, for the mechanical and 7, for thermal fields can be evaluated by (67) and (69)
respectively, which yields ¢, = O(1) s and # = O(107!) s. The response of the bar under one-cycle loading,
ie. wt € [0,1] in (70) with z = 0.04 mm and w = 0.1, 1, and 10 rad/s, are shown in Figs. 2-4. The reference
solutions are obtained by using very fine mesh in the heterogeneous model and then taking volume average
over the unit cell domain. In Fig. 2 we consider w = 0.1 rad/s which gives 7y = 10 s and thus ¢, > 1 for both
mechanical and thermal fields. It can be seen that in this case the present formulation errs badly while the
solution obtained by the classical spatial homogenization, which needs the existence of ¢ only, is in good
agreement with the reference solution. Fig. 3 illustrates a mixed case, where 7y = 1 s and thus ¢, = O(107!)
for the mechanical field, while ¢, > 1 for the thermal field. The numerical results show that the present
space-time homogenization provides a good approximation to the reference solutions. This is consistent
with the observations made in Section 3 and Table 2. In Fig. 3, 1 is further reduced to 0.1 s and in this case
we have ¢, = O(1072) in the mechanical field and &, = O(107!) in the thermal field. Excellent agreement
between the reference solutions and the present formulation can be observed.

4.2. Three-dimensional example

We consider a single ply of unidirectionally reinforced fibrous composite subjected to the uniform
pressure as shown in Fig. 5. Fibers are assumed to be aligned in X direction and the ply is supported by a
rigid foundation. We further assume that the thickness (10 mm in Z direction) of the ply is very small
compared with the size in other two dimensions (X and Y directions). Thus the thermo-mechanical response
of the composite ply can be described by a stack of unit cells along Z direction subjected to the periodic
boundary conditions in X and Y directions. The finite element model of the unit cell is shown in Fig. 5.
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Fig. 2. Loading profile and mechanical/thermal responses for the one-dimensional example (w = 10 rad/s, 0.1 Hz).

We assume that each phase in the unit cell is isotropic and homogeneous. The material properties are
summarized below:

Fiber: E™ =37.92 GPa, v =021, V" =6 GPas, o, =1x 10 K™, p, = 2200 kg/m°,
c1 =1kJ/kgK, k =02 W/mK, d; =0.267

Matrix: EM = 6.89 GPa, v =0.33, Vi" =3 GPas, o, =5x107° K™', p, = 1100 kg/m’,
¢ =2 KI/kgK, k» =1 W/mK, dy = 0.733

where v" is Poisson’s ratio at initial temperature, we assume that the thermal sensitivities for elastic stiffness

and viscosity are: 4%, = —0.01L%, and B}, = —0.05V;. The adiabatic boundary conditions are imposed
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Fig. 3. Loading profile and mechanical/thermal responses for the one-dimensional example (w = 1 rad/s, 1 Hz).

on the ply, and the body force b; and the heat supply Q are set to zero. The initial temperature 7, = 300 K is

assumed to be uniform throughout the ply. As shown in Fig. 5, the displacement boundary condition in the
form of

u(x =0,1) = 0.5a(1 — cos 2nwt) (74)

is applied in Z direction on the free boundary, where # and w are the loading parameters.

The reference solution obtained by deploying a very fine mesh in the three-dimensional strip is compared
against the homogenized solution. The simulation results of one-cycle 10-Hz loading are plotted in Figs. 6
and 7, where the loading history and the corresponding comparisons between the reference solutions and
the homogenized solutions of end force, temperature change and stress component are illustrated. It can be
seen that the dilation effect offsets the temperature increase in the unloading phase. In Fig. 8, the distri-
bution of the residual stress a3, in the unit cell right after the one-cycle loading, which is reconstructed from
the homogenized solution (60), compares well with the reference solution.
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Fig. 4. Loading profile and mechanical/thermal responses for the one-dimensional example (o = 0.1 rad/s, 10 Hz).

5. Summary and future research directions

A multiscale space-time asymptotic homogenization procedure for analyzing multiple physical processes
interacting at multiple spatial and temporal scales is developed and applied to the coupled thermo-visco-
elastic composites. Rapidly varying spatial and temporal scales are introduced to capture the oscillations
induced by local heterogeneities at diverse time scales. The homogenized initial-boundary value problem
along with the homogenized constitutive equations are derived using the double scale asymptotic analysis in
space and time. It is shown that the additional long-term memory induced by homogenization process can
be obtained by solving a first order initial value problem as opposed to solving initial-boundary value
problem in the unit cell domain in the case of the classical spatial homogenization.

We have identified two diverse time scales resulting from the input excitations and rate dependent
material behavior. Further investigation reveals higher order terms in the asymptotic expansions grow
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Fig. 5. Composite plate and the associated unit cell.
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Fig. 6. Loading history and the end force obtained with the homogenized and reference solutions.

unbounded in time and will affect the accuracy of the first order homogenized solutions when the obser-
vation time window is long enough. A regularization scheme to suppress this secular time dependence has
been recently proposed for wave propagation problems in elastic heterogeneous solid (Chen and Fish, in

press). The applicability of this regularization scheme for the present model will be investigated in the future
work.
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Appendix A

In this section, we summarize the results of O(&”) homogenized solutions corresponding to different
combinations of spatial and temporal length scales as shown in Table 2. We start by introducing the av-
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eraging operator in the time domain with fast temporal oscillating variable 7. According to Francfort
(1983), it requires

lim — ! f (r)dt exist and be finite (A.1)

T—00 ‘L' 0
In the Laplace transformed domain, (A.1) is equivalent to
lin(}sf (s) exist and be finite (A.2)

where s is the variable in the transformed domain corresponding to t; (s) is Laplace transformation of
function f(1).

A.1. Thermal fields: ¢, =¢€", ¢, = ¢
A.1.1. Mechanical fields: ¢, = &", ¢, = ¢
The O(¢°) order equation of motion and energy equation can be expressed as
ij.x; + O-I”/Iy +bi
)5(90 + 6,11) = qi‘x; + qz'l,y,- + V;jklézjégl - TOﬂ;}ég'

pu =q

(A.3)

where «! and 0° are both independent of the fast varying variables and represent the macroscopic dis-

placement and temperature change; the O(&) order stress ag. and strain rate &}, take the following form

0 _ 7e 0 0
0, =Liyen, +V, ljklekl B 0

ij
8, = e+ ) -
where e;',’l;lf is obtained by solving a linear unit cell problem with periodic boundary conditions
{Lz/kleklx + Vz;kl(eklxt + e;cnlﬁ) ﬁ?jé)o}% =0 (A.5)
Following (46) and (57), the solution of (A.5) is given as
el”/ﬁ(x Y:0) = i (6,3, )€, + Lot (X, 9, 1)€) o,z = N (2,9, 00" + P (X, 9, W), (A.6)

where the four time-dependent parameters &y Ciimns g @0d 74y, are defined in (58). To this end, we
conclude that the present local constitutive equation (A.4) is identical to (60). Making use of the ho-
mogenization process for O(¢’) equation of motion in Section 2.3.4 leads to the same homogenized
equation of motion:

pir) = aw + b; (A7)
and the associated homogenized constitutive equation
oy = Lywiely, + Vi, — By0° + Ay}, (A.8)

where the homogenized coefficients in (A.8) are defined in (63).
For the O(&") energy equation, the heat flux ¢” is determined by

g; = k(0% +0,) (A9)

where 03/ is obtained by solving a linear unit cell problem
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{kf,(f)fl, + 03,,.)} =0 (A.10)

i

Following (41)—(44), we have
0, (x,9,0) = 1,00, and  gq] = ki (0u + 1y, ()67, (A.11)

where y;(y) is defined in (43). The homogenized energy equation is obtained by applying the spatial and
temporal averaging processes, (56) and (A.2), to the second equation in (A.3) and making use of (A.11) so
that

700 = (ky00,)., + O+ (Vi) — To(Be0) (A12)

where all the quantities have the same definitions as those in (64).

A.1.2. Mechanical fields: ¢ = ¢, ¢, = &"
Comparing this case to Section A.1.1, the only difference is in the O(&”) order equation of motion

Pl +um) =06 +o t/v + b; (A.13)

ij.xj

where i’ and 0" are both independent of the fast varying variables and represent the macroscopic dis-

placement and temperature change; ¢ i is defined in (A.4). Since u;” vanishes due to the temporal averaging
(A.2), and both ¢7; in (A.3) and a v, in (A.13) have no contribution to the homogenized equation of
motion due to local periodicity, the O( %) order homogenized equations in the present case are identical to
those in Section A.1.1.

A.1.3. Mechanical fields: ¢, = €", t9/t, = 1
The O(£) order equation of motion and energy equation can be expressed as
o’ u = Gux + ag'y + b;

0 | (A.14)
A (9 + 9,7:) = qi,x,- + qi,y, + Vl/kleljekl Toﬁyez/

where ! and 0" are both independent of the fast varying Variables and represent the macroscopic dis-
placement and temperature change; the O(&) order stress tensor a and strain rate tensor &), take the
following form

& € a m e 00
(szkl Vi = ot > (eglx + ekly) - ﬁije

(A.15)
ég/ = eg/x,z + eklycr
where ¢}), is determined by a local initial-boundary problem
{ ( i+ Vi ai) (eise + €liy) = ﬁ;}HO} =0 (A.16)

Vi

(A.16) is in the similar form as those obtained by spatial homogenization (Francfort and Suquet, 1986;
Sanchez-Palencia, 1980; Tartar, 1990). For the O(°) energy equation, the heat flux ¢° is determined by
(A.11). The homogenized energy equation has the same form as (A.12), but the definition of ég, follows
(A.15). In this case, it is shown that the homogenized solutions obtained in Section 2.3.4 are not valid.
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A.2. Thermal fields: ¢, = ¢, &, = &"

A.2.1. Mechanical fields: ¢, = ¢", ¢, = ¢
In this case, the O(¢’) order equation of motion and its homogenized solutions are the same as those in
Section A.1.1. For the O(®) energy equation,

}f;(go + 9”1) = ‘I?x,» + ‘I},y,- + Vij‘klégégl - Toﬁ;}ég (A.17)
where strain rate é?j is given in (A.4); the heat flux ¢° is determined by
0_ 7.0 1
q; = k(0 +0,) (A.18)
and H,Iy]_ can be obtained by solving a linear unit cell problem
e (00 1 .
{0} =0 (A.19)

Following (41)—(44), we have
0, (x,9.0) = 1y, (0%, and ¢} = ki (3 + ., (0))65, (A.20)

where ,(y) is defined in (43). The homogenized energy equation is obtained by applying the spatial and
temporal averaging processes to (A.17) and making use of (A.20) so that

W' = (k05 + O+ (Viyenel) — To(Be)) (A.21)

where all the quantities have the same definitions as those in (64).

A.2.2. Mechanical fields: ¢, = ¢, ¢, = &"

In this case, the O(&”) order equation of motion and its homogenized solutions are the same as those in
Section A.1.2, while the O(¢°) order energy equation and its homogenized solutions are the same as those in
Section A.2.1.

A.2.3. Mechanical fields: ¢, = &", t1p/t, = 1
The homogenized equation of motion and energy equation in this case are the same as those obtained in
Section A.1.3. Our solutions in Section 2.3.4 are not valid in this case.

A.3. Thermal fields: ¢, = €", t19/t; = 1

A.3.1. Mechanical fields: ¢, = ¢", e, = ¢

In this case the O(&”) order equation of motion and its homogenized solutions are the same as those
obtained in Section A.1.1. The O(&) order energy equation can be obtained by removing 0411 in (A.5) and
the homogenized energy equation is the same as that in Section A.l.1 since 9.11 vanishes due to temporal
averaging. '

A.3.2. Mechanical fields: ¢, = ¢, ¢, = &"

In this case the O(&”) order equation of motion and its homogenized solutions are the same as those
obtained in Section A.1.2. The O(&) order energy equation can be obtained by removing HL in (A.5) and
the homogenized energy equation is the same as that in Section A.1.1.

A.3.3. Mechanical fields: ¢ = €", 1p/t, = 1
Similar to Section A.2.3, our homogenized solutions in Section 2.3.4 are not valid in this case.
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